Cycle (graph theory)

A graph with edges colored to illustrate a closed walk, H–A–B–A–H, in green; a circuit which is a closed walk in which all edges are distinct, B–D–E–F–D–C–B, in blue; and a cycle which is a closed walk in which all vertices are distinct, H–D–G–H, in red.

In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal.

A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed acyclic graph. A connected graph without cycles is called a tree.

Definitions

Circuit and cycle

  • A circuit is a non-empty trail in which the first and last vertices are equal (closed trail).[1]
Let G = (V, E, Φ) be a graph. A circuit is a non-empty trail (e1, e2, ..., en) with a vertex sequence (v1, v2, ..., vn, v1).
  • A cycle or simple circuit is a circuit in which only the first and last vertices are equal.[1]
  • n is called the length of the circuit resp. length of the cycle.

Directed circuit and directed cycle

  • A directed circuit is a non-empty directed trail in which the first and last vertices are equal (closed directed trail).[1]
Let G = (V, E, Φ) be a directed graph. A directed circuit is a non-empty directed trail (e1, e2, ..., en) with a vertex sequence (v1, v2, ..., vn, v1).
  • A directed cycle or simple directed circuit is a directed circuit in which only the first and last vertices are equal.[1]
  • n is called the length of the directed circuit resp. length of the directed cycle.

Chordless cycle

In this graph the green cycle A–B–C–D–E–F–A is chordless whereas the red cycle G–H–I–J–K–L–G is not. This is because the edge {K, I} is a chord.

A chordless cycle in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle. An antihole is the complement of a graph hole. Chordless cycles may be used to characterize perfect graphs: by the strong perfect graph theorem, a graph is perfect if and only if none of its holes or antiholes have an odd number of vertices that is greater than three. A chordal graph, a special type of perfect graph, has no holes of any size greater than three.

The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.

A peripheral cycle is a cycle in a graph with the property that every two edges not on the cycle can be connected by a path whose interior vertices avoid the cycle. In a graph that is not formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.

Cycle space

The term cycle may also refer to an element of the cycle space of a graph. There are many cycle spaces, one for each coefficient field or ring. The most common is the binary cycle space (usually called simply the cycle space), which consists of the edge sets that have even degree at every vertex; it forms a vector space over the two-element field. By Veblen's theorem, every element of the cycle space may be formed as an edge-disjoint union of simple cycles. A cycle basis of the graph is a set of simple cycles that forms a basis of the cycle space.[2]

Using ideas from algebraic topology, the binary cycle space generalizes to vector spaces or modules over other rings such as the integers, rational or real numbers, etc.[3]

Cycle detection

The existence of a cycle in directed and undirected graphs can be determined by whether a depth-first search (DFS) finds an edge that points to an ancestor of the current vertex (i.e., it contains a back edge).[4] All the back edges which DFS skips over are part of cycles.[5] In an undirected graph, the edge to the parent of a node should not be counted as a back edge, but finding any other already visited vertex will indicate a back edge. In the case of undirected graphs, only O(n) time is required to find a cycle in an n-vertex graph, since at most n − 1 edges can be tree edges.

Many topological sorting algorithms will detect cycles too, since those are obstacles for topological order to exist. Also, if a directed graph has been divided into strongly connected components, cycles only exist within the components and not between them, since cycles are strongly connected.[5]

For directed graphs, distributed message-based algorithms can be used. These algorithms rely on the idea that a message sent by a vertex in a cycle will come back to itself. Distributed cycle detection algorithms are useful for processing large-scale graphs using a distributed graph processing system on a computer cluster (or supercomputer).

Applications of cycle detection include the use of wait-for graphs to detect deadlocks in concurrent systems.[6]

Algorithm

The aforementioned use of depth-first search to find a cycle can be described as follows:

For every vertex v: visited(v) = finished(v) = false
For every vertex v: DFS(v)

where

DFS(v) =
  if finished(v): return
  if visited(v):
    "Cycle found"
    return
  visited(v) = true
  for every neighbour w: DFS(w)
  finished(v) = true

For undirected graphs, "neighbour" means all vertices connected to v, except for the one that recursively called DFS(v). This omission prevents the algorithm from finding a trivial cycle of the form vwv; these exist in every undirected graph with at least one edge.

A variant using breadth-first search instead will find a cycle of the smallest possible length.

Covering graphs by cycle

In his 1736 paper on the Seven Bridges of Königsberg, widely considered to be the birth of graph theory, Leonhard Euler proved that, for a finite undirected graph to have a closed walk that visits each edge exactly once (making it a closed trail), it is necessary and sufficient that it be connected except for isolated vertices (that is, all edges are contained in one component) and have even degree at each vertex. The corresponding characterization for the existence of a closed walk visiting each edge exactly once in a directed graph is that the graph be strongly connected and have equal numbers of incoming and outgoing edges at each vertex. In either case, the resulting closed trail is known as an Eulerian trail. If a finite undirected graph has even degree at each of its vertices, regardless of whether it is connected, then it is possible to find a set of simple cycles that together cover each edge exactly once: this is Veblen's theorem.[7] When a connected graph does not meet the conditions of Euler's theorem, a closed walk of minimum length covering each edge at least once can nevertheless be found in polynomial time by solving the route inspection problem.

The problem of finding a single simple cycle that covers each vertex exactly once, rather than covering the edges, is much harder. Such a cycle is known as a Hamiltonian cycle, and determining whether it exists is NP-complete.[8] Much research has been published concerning classes of graphs that can be guaranteed to contain Hamiltonian cycles; one example is Ore's theorem that a Hamiltonian cycle can always be found in a graph for which every non-adjacent pair of vertices have degrees summing to at least the total number of vertices in the graph.[9]

The cycle double cover conjecture states that, for every bridgeless graph, there exists a multiset of simple cycles that covers each edge of the graph exactly twice. Proving that this is true (or finding a counterexample) remains an open problem.[10]

Graph classes defined by cycle

Several important classes of graphs can be defined by or characterized by their cycles. These include:

See also

References

  1. ^ a b c d Bender & Williamson 2010, p. 164.
  2. ^ Gross, Jonathan L.; Yellen, Jay (2005), "4.6 Graphs and Vector Spaces", Graph Theory and Its Applications (2nd ed.), CRC Press, pp. 197–207, ISBN 9781584885054, archived from the original on 2023-02-04, retrieved 2016-09-27.
  3. ^ Diestel, Reinhard (2012), "1.9 Some linear algebra", Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer, pp. 23–28, archived from the original on 2023-02-04, retrieved 2016-09-27.
  4. ^ Tucker, Alan (2006). "Chapter 2: Covering Circuits and Graph Colorings". Applied Combinatorics (5th ed.). Hoboken: John Wiley & sons. p. 49. ISBN 978-0-471-73507-6.
  5. ^ a b Sedgewick, Robert (1983), "Graph algorithms", Algorithms, Addison–Wesley, ISBN 0-201-06672-6
  6. ^ Silberschatz, Abraham; Peter Galvin; Greg Gagne (2003). Operating System Concepts. John Wiley & Sons, INC. pp. 260. ISBN 0-471-25060-0.
  7. ^ Veblen, Oswald (1912), "An Application of Modular Equations in Analysis Situs", Annals of Mathematics, Second Series, 14 (1): 86–94, doi:10.2307/1967604, JSTOR 1967604.
  8. ^ Richard M. Karp (1972), "Reducibility Among Combinatorial Problems" (PDF), in R. E. Miller and J. W. Thatcher (ed.), Complexity of Computer Computations, New York: Plenum, pp. 85–103, archived (PDF) from the original on 2021-02-10, retrieved 2014-03-12.
  9. ^ Ore, Ø. (1960), "Note on Hamilton circuits", American Mathematical Monthly, 67 (1): 55, doi:10.2307/2308928, JSTOR 2308928.
  10. ^ Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, vol. 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN 978-0-444-87803-8.

Read other articles:

Elly Rachmat Yasin Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019PresidenJoko WidodoPerolehan suara71.884Daerah pemilihanJawa Barat V Informasi pribadiLahir9 Desember 1966 (umur 57)Bogor, Jawa BaratPartai politikPPPSuami/istriRahmat YasinPekerjaanPolitikusSunting kotak info • L • B Elly Rachmat Yasin (lahir 9 Desember 1966) adalah politikus Indonesia yang menjabat sebagai anggota DPR-RI periode 2019–2024. Ia mewakili daerah pem...

 

Untuk tokoh Alkitab yang menjadi nama dari kitab ini, lihat Yesaya. Untuk kegunaan lain, lihat Yesaya (disambiguasi). Yosua 1:1 pada Kodeks Aleppo Perjanjian Lama (Kristen) Taurat Kejadian Keluaran Imamat Bilangan Ulangan Sejarah Yosua Hakim-hakim Rut 1 Samuel 2 Samuel 1 Raja-raja 2 Raja-raja 1 Tawarikh 2 Tawarikh Ezra Nehemia Ester Puisi Ayub Mazmur Amsal Pengkhotbah Kidung Agung Kenabian Besar Yesaya Yeremia Ratapan Yehezkiel Daniel Kecil Hosea Yoël Amos Obaja Yunus Mikha Nahum Habakuk Zef...

 

Structure anéchoïque. Une chambre anéchoïque (ou « chambre sourde ») est une salle d'expérimentation dont les parois absorbent les ondes sonores ou électromagnétiques[1], en reproduisant des conditions de champ libre et ne provoquant donc pas d'écho pouvant perturber les mesures[2]. De telles chambres sont utilisées pour mesurer des ondes acoustiques ou électromagnétiques dans des conditions de champ libre, c'est-à-dire en l'absence de composantes ayant subi une réver...

Bandar Udara Shimojishima下地島空港Shimojishima KūkōIATA: SHIICAO: RORSInformasiJenisPublic / Dual-usePengelolaPerfektur OkinawaLokasiShimojishima, Miyakojima, Okinawa, JepangKetinggian dpl mdplPetaRORSLokasi di JepangLandasan pacu Arah Panjang Permukaan m kaki 17/35 3,000 10 Aspal Sumber: Japanese AIP at AIS Japan[1] Bandar Udara Shimojishima (下地島空港code: ja is deprecated , Shimojishima Kūkō, (IATA: SHI, ICAO: RORS)) adalah bandar udara yang berlokasi...

 

Passeport marocain Nom local (ar) جواز سفر مغربي Type Passeport Utilité Déplacements internationaux Délivré par Maroc Dernière version 15 septembre 2009 Biométrique Oui Conditions d'obtention Nationalité marocaine Durée de validité 5 ans Zone de validité Monde entier modifier  Un passeport marocain (en arabe : جواز سفر مغربي) est un passeport délivré aux citoyens marocains pour les voyages internationaux. Le royaume du Maroc a mis en circulation ...

 

STAIN Mandailing NatalSumatera Utara - IndonesiaLOGO STAIN MANDAILING NATALSUMATERA UTARA- INDONESIAJenisPerguruan tinggi Islam negeri di IndonesiaDidirikan12 April 2018Lembaga indukKementerian Agama Republik IndonesiaAfiliasiIslamKetuaProf. Dr. H. Sumper Mulia Harahap, M.Ag.LokasiMandailing Natal, Sumatera Utara, IndonesiaNama julukanSTAIN MadinaSitus web[1] Sekolah Tinggi Agama Islam Negeri (STAIN) Mandailing Natal adalah Perguruan Tinggi Negeri di Mandailing Natal, Sumatera Utara, Indonesi...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Sir John Gardiner Sumner Hobson OBE, TD, QC, PC, PM (1912 – 4 December 1967) adalah politikus dari Partai Konservatif Inggris. Karier Hobson belajar di Harrow dan Brasenose College, Oxford, lulus sengan peringkat kedua dalan Sejarah pada tahun 1934....

 

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon...

 

سوق مالية سوق تداول - سند ضمان سوق السندات تقييم السندات  [لغات أخرى]‏ سندات الشركة دخل ثابت سند سيادي الديون ذات العائد المرتفع Municipal bond توريق سوق الأسهم المالية سهم عادي سهم ممتاز سهم مسجل سهم (اقتصاد) شهادة السهم سوق الأوراق المالية أسواق أخرى مشتق مالي (مشتق ائتما�...

SD Negeri Bojongsari 4InformasiDidirikan04 Januari 1976JenisNegeriAkreditasiBNomor Statistik Sekolah101026600228Nomor Pokok Sekolah Nasional20228649Kepala SekolahRopi S.PdRentang kelasI, II, III, IV, V, VIKurikulumKurikulum 2013StatusSekolah Standar NasionalAlamatLokasiJalan Pelita Jaya №39, Bojongsaribaru, Kec. Bojongsari, Depok, Jawa Barat, IndonesiaTel./Faks.(0251) 8924266Situs webSitus [email protected] SD Negeri Bojongsari 4 adalah sebuah sekolah dasar ...

 

Bilateral relationsArgentina–Canada relations Argentina Canada Bilateral relations between the Argentine Republic and Canada have existed for over a century. Both nations are members of the Cairns Group, G20, Organization of American States and the United Nations. History Relations between Argentina and Canada date back to 1867, when the Canadian government carried out its first commercial mission to Argentina and other countries in the region.[1] In 1911, Canada opened its first So...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Segitiga Sunni – berita · surat kabar · buku · cendekiawan · JSTOR Peta Segitiga Sunni Segitiga Sunni adalah kawasan yang berbentuk seperti segitiga di sebelah barat laut Bagdad, Irak. Kawasan ini dihuni...

الاتحاد الدانماركي لكرة القدم الاسم المختصر DBU الرياضة كرة القدم أسس عام 1889 (منذ 135 سنة) الانتسابات الفيفا : 1904 UEFA  : 1954 رمز الفيفا DEN  الموقع الرسمي www.dbu.dk تعديل مصدري - تعديل   تأسس الاتحاد الدنمركي لكرة القدم في عام 1889م وانضم إلى الاتحاد الدولي لكرة القدم في 1904م وان�...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يوليو 2021) لغة إشارة كينتش القديمة الناطقون 0   النسب لغة إشارة كينتش القديمة ترميز �...

 

Christine Scott BennettTahun aktif2007 – Sampai Sekarang Christine Scott Bennett merupakan seorang aktris berkebangsaan Amerika. Salah satu filmnya yang cukup terkenal adalah Funny or Die Presents (2010). Filmografi Pose Down (2007) My Best Friend's Girl (2008) Boston Legal TV Series, episode Smoking Signals (2008) True Jackson, VP TV Series, episode ReTRUEnion (2009) CSI: Crime Scene Investigation TV Series, episode A Space Oddity (2009) How I Met Your Mother TV Series, episode The L...

Questa voce sull'argomento distretti dell'Irlanda del Nord è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Distretto di Ballymenaex distrettoBallymena Borough LocalizzazioneStato Regno Unito    Irlanda del Nord Contea Antrim AmministrazioneCapoluogoBallymena Data di soppressione2015 TerritorioCoordinatedel capoluogo54°51′36″N 6°16′48″W54°51′36″N, 6°16′48″W (Distretto di Ballymena) Superficie632 ...

 

Questa voce sugli argomenti avvocati e giornalisti è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento politici portoghesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. José de Castro 63º Primo ministro del PortogalloDurata mandato17 maggio 1915 –29 novembre 1915 PredecessoreJoão Chagas SuccessoreAfonso Costa Ministro ...

 

Chinese official history (c. 290 CE) This article is about the official work of history. For other works, see Records of the Three Kingdoms (disambiguation). Records of the Three Kingdoms A fragment of the biography of Bu Zhi from the Records of the Three Kingdoms, part of the Dunhuang manuscriptsAuthorChen ShouOriginal title三國志LanguageClassical ChinesePublication date280s or 290sPublication placeChina Records of the Three KingdomsChinese nameTraditional Chinese三國志Simpli...

Multi-parasport event in Beijing, China XIII Paralympic Winter GamesLocationBeijing, ChinaMottoTogether for a Shared Future(Chinese: 一起向未来)Nations46[1]Athletes564[1]Events78 in 6 sportsOpening4 MarchClosing13 MarchOpened byPresident Xi Jinping[a]CauldronLi DuanStadiumBeijing National StadiumWinter← PyeongChang 2018Milan-Cortina 2026 → Summer← Tokyo 2020Paris 2024 → 2022 Winter Olympics Part of a series on2022 Wi...

 

Pilot Pen Tennis 2009Sport Tennis Data21 agosto – 29 agosto Edizione29a (maschile) 42a (femminile) SuperficieCemento CampioniSingolare maschile Fernando Verdasco Singolare femminile Caroline Wozniacki Doppio maschile Julian Knowle / Jürgen Melzer Doppio femminile Nuria Llagostera Vives / María José Martínez Sánchez 2008 2010 Il Pilot Pen Tennis 2009 è stato un torneo di tennis giocato sul cemento. È stata la 29ª edizione del Pilot Pen Tennis, che fa parte della categoria ATP World T...