Peripheral cycle

In this graph, the red triangle formed by vertices 1, 2, and 5 is a peripheral cycle: the four remaining edges form a single bridge. However, pentagon 1–2–3–4–5 is not peripheral, as the two remaining edges form two separate bridges.

In graph theory, a peripheral cycle (or peripheral circuit) in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles (or, as they were initially called, peripheral polygons, because Tutte called cycles "polygons") were first studied by Tutte (1963), and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.[1]

Definitions

A peripheral cycle in a graph can be defined formally in one of several equivalent ways:

  • is peripheral if it is a simple cycle in a connected graph with the property that, for every two edges and in , there exists a path in that starts with , ends with , and has no interior vertices belonging to .[2]
  • If is any subgraph of , a bridge[3] of is a minimal subgraph of that is edge-disjoint from and that has the property that all of its points of attachments (vertices adjacent to edges in both and ) belong to .[4] A simple cycle is peripheral if it has exactly one bridge.[5]
  • In a connected graph that is not a theta graph, peripheral cycles cannot have chords, because any chord would be a bridge, separated from the rest of the graph. In this case, is peripheral if it is an induced cycle with the property that the subgraph formed by deleting the edges and vertices of is connected.[6]

The equivalence of these definitions is not hard to see: a connected subgraph of (together with the edges linking it to ), or a chord of a cycle that causes it to fail to be induced, must in either case be a bridge, and must also be an equivalence class of the binary relation on edges in which two edges are related if they are the ends of a path with no interior vertices in .[7]

Properties

Peripheral cycles appear in the theory of polyhedral graphs, that is, 3-vertex-connected planar graphs. For every planar graph , and every planar embedding of , the faces of the embedding that are induced cycles must be peripheral cycles. In a polyhedral graph, all faces are peripheral cycles, and every peripheral cycle is a face.[8] It follows from this fact that (up to combinatorial equivalence, the choice of the outer face, and the orientation of the plane) every polyhedral graph has a unique planar embedding.[9]

In planar graphs, the cycle space is generated by the faces, but in non-planar graphs peripheral cycles play a similar role: for every 3-vertex-connected finite graph, the cycle space is generated by the peripheral cycles.[10] The result can also be extended to locally-finite but infinite graphs.[11] In particular, it follows that 3-connected graphs are guaranteed to contain peripheral cycles. There exist 2-connected graphs that do not contain peripheral cycles (an example is the complete bipartite graph , for which every cycle has two bridges) but if a 2-connected graph has minimum degree three then it contains at least one peripheral cycle.[12]

Peripheral cycles in 3-connected graphs can be computed in linear time and have been used for designing planarity tests.[13] They were also extended to the more general notion of non-separating ear decompositions. In some algorithms for testing planarity of graphs, it is useful to find a cycle that is not peripheral, in order to partition the problem into smaller subproblems. In a biconnected graph of circuit rank less than three (such as a cycle graph or theta graph) every cycle is peripheral, but every biconnected graph with circuit rank three or more has a non-peripheral cycle, which may be found in linear time.[14]

Generalizing chordal graphs, Seymour & Weaver (1984) define a strangulated graph to be a graph in which every peripheral cycle is a triangle. They characterize these graphs as being the clique-sums of chordal graphs and maximal planar graphs.[15]

Peripheral cycles have also been called non-separating cycles,[2] but this term is ambiguous, as it has also been used for two related but distinct concepts: simple cycles the removal of which would disconnect the remaining graph,[16] and cycles of a topologically embedded graph such that cutting along the cycle would not disconnect the surface on which the graph is embedded.[17]

In matroids, a non-separating circuit is a circuit of the matroid (that is, a minimal dependent set) such that deleting the circuit leaves a smaller matroid that is connected (that is, that cannot be written as a direct sum of matroids).[18] These are analogous to peripheral cycles, but not the same even in graphic matroids (the matroids whose circuits are the simple cycles of a graph). For example, in the complete bipartite graph , every cycle is peripheral (it has only one bridge, a two-edge path) but the graphic matroid formed by this bridge is not connected, so no circuit of the graphic matroid of is non-separating.

References

  1. ^ Tutte, W. T. (1963), "How to draw a graph", Proceedings of the London Mathematical Society, Third Series, 13: 743–767, doi:10.1112/plms/s3-13.1.743, MR 0158387.
  2. ^ a b Di Battista, Giuseppe; Eades, Peter; Tamassia, Roberto; Tollis, Ioannis G. (1998), Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, pp. 74–75, ISBN 978-0-13-301615-4.
  3. ^ Not to be confused with bridge (graph theory), a different concept.
  4. ^ Tutte, W. T. (1960), "Convex representations of graphs", Proceedings of the London Mathematical Society, Third Series, 10: 304–320, doi:10.1112/plms/s3-10.1.304, MR 0114774.
  5. ^ This is the definition of peripheral cycles originally used by Tutte (1963). Seymour & Weaver (1984) use the same definition of a peripheral cycle, but with a different definition of a bridge that more closely resembles the induced-cycle definition for peripheral cycles.
  6. ^ This is, essentially, the definition used by Bruhn (2004). However, Bruhn distinguishes the case that has isolated vertices from disconnections caused by the removal of .
  7. ^ See e.g. Theorem 2.4 of Tutte (1960), showing that the vertex sets of bridges are path-connected, see Seymour & Weaver (1984) for a definition of bridges using chords and connected components, and also see Di Battista et al. (1998) for a definition of bridges using equivalence classes of the binary relation on edges.
  8. ^ Tutte (1963), Theorems 2.7 and 2.8.
  9. ^ See the remarks following Theorem 2.8 in Tutte (1963). As Tutte observes, this was already known to Whitney, Hassler (1932), "Non-separable and planar graphs", Transactions of the American Mathematical Society, 34 (2): 339–362, doi:10.2307/1989545, JSTOR 1989545, MR 1501641.
  10. ^ Tutte (1963), Theorem 2.5.
  11. ^ Bruhn, Henning (2004), "The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits", Journal of Combinatorial Theory, Series B, 92 (2): 235–256, doi:10.1016/j.jctb.2004.03.005, MR 2099143.
  12. ^ Thomassen, Carsten; Toft, Bjarne (1981), "Non-separating induced cycles in graphs", Journal of Combinatorial Theory, Series B, 31 (2): 199–224, doi:10.1016/S0095-8956(81)80025-1, MR 0630983.
  13. ^ Schmidt, Jens M. (2014), "The Mondshein Sequence", Proceedings of the 41st International Colloquium on Automata, Languages and Programming (ICALP'14), Lecture Notes in Computer Science, vol. 8572, pp. 967–978, doi:10.1007/978-3-662-43948-7_80, ISBN 978-3-662-43947-0.
  14. ^ Di Battista et al. (1998), Lemma 3.4, pp. 75–76.
  15. ^ Seymour, P. D.; Weaver, R. W. (1984), "A generalization of chordal graphs", Journal of Graph Theory, 8 (2): 241–251, doi:10.1002/jgt.3190080206, MR 0742878.
  16. ^ E.g. see Borse, Y. M.; Waphare, B. N. (2008), "Vertex disjoint non-separating cycles in graphs", The Journal of the Indian Mathematical Society, New Series, 75 (1–4): 75–92 (2009), MR 2662989.
  17. ^ E.g. see Cabello, Sergio; Mohar, Bojan (2007), "Finding shortest non-separating and non-contractible cycles for topologically embedded graphs", Discrete and Computational Geometry, 37 (2): 213–235, doi:10.1007/s00454-006-1292-5, MR 2295054.
  18. ^ Maia, Bráulio, Junior; Lemos, Manoel; Melo, Tereza R. B. (2007), "Non-separating circuits and cocircuits in matroids", Combinatorics, complexity, and chance, Oxford Lecture Ser. Math. Appl., vol. 34, Oxford: Oxford Univ. Press, pp. 162–171, doi:10.1093/acprof:oso/9780198571278.003.0010, ISBN 978-0-19-857127-8, MR 2314567{{citation}}: CS1 maint: multiple names: authors list (link).

Read other articles:

The Last SamuraiPoster film The Last SamuraiSutradara Edward Zwick Produser Marshall Herskovitz Edward Zwick Tom Cruise Paula Wagner Scott Kroopf Tom Engelman Ditulis oleh John Logan Edward Zwick Marshall Herskovitz CeritaJohn LoganPemeranTom CruiseTimothy SpallKen WatanabeBilly ConnollyTony GoldwynHiroyuki SanadaKoyukiShin KoyamadaPenata musikHans ZimmerSinematograferJohn TollPenyuntingSteven RosenblumVictor DuboisPerusahaanproduksiRadar PicturesBedford Falls ProductionsCruise/Wagner P...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 26 de abril de 2012. Spencer Boldman Información personalNombre de nacimiento Spencer Thomas BoldmanNacimiento 28 de julio de 1992 (31 años)Dallas, Texas, Estados UnidosNacionalidad EstadounidenseLengua materna Inglés Características físicasAltura 1,88 m (6 ft 2 inEducaciónEducado en Plano East Senior High School Información profesionalOcupación ActorAños activo d...

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Malekeh Jahan – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Malekeh Jahan Malekeh-Jahan, Queen ...

Gambar bij tasbih. Berkas:Rosario sederhana.jpgSebuah rosario umat Katolik. Biji tasbih yang sedang dipegang oleh biksu Buddha. Biji tasbih (Arab: مسبحة Misbaḥah; سبحة Subḥah) adalah alat berhitung dalam beribadah bermacam-macam umat beragama, baik Agama Samawi dan Agama Dharmik. Sebagian umat Muslim menggunakan biji tasbih sebagai alat menghitung zikir (mengucapkan puji-pujian kepada Tuhan), sedangkan sebagian lainnya menggunakan jari kanan untuk berzikir.[1] Translitera...

Egyptian writer Youssef RakhaNative nameيوسف رخاBorn (1976-06-12) June 12, 1976 (age 47)Cairo, EgyptLanguageEnglish, ArabicAlma materUniversity of Hull (BA)SubjectCairo; Islam; the Arab SpringYears active1999–presentNotable worksThe Book of the Sultan's SealSpouseHeba El Nahhas (m. 2011)Websitetherakha.net Literature portal Youssef Rakha (Arabic: يوسف رخا; born on 12 June 1976 in Cairo, Egypt) is an Egyptian writer. His work explores language and identi...

2005 anime film by Morio Asaka Last Order: Final Fantasy VIILast Order promotional artwork featuring Zack (front), Sephiroth (middle), and Jenova (back)ラストオーダー -ファイナルファンタジーVII-(Rasuto Ōdā -Fainaru Fantajī Sebun-)GenreFantasy, action, Science fiction, cyberpunk Original video animationDirected byMorio AsakaProduced byMasao MaruyamaJungo MarutaAkio OfujiWritten byScreenplay:Kazuhiko InukaiKazushige NojimaMusic byTakeharu IshimotoStudioM...

13th-century Bishop of Chichester and saint Saint Richard redirects here. For other uses, see Saint Richard (disambiguation). SaintRichard of ChichesterBishop of ChichesterA wall painting of St. Richard of Chichester at St Mary's Black BourtonInstalled1244Term ended1253PredecessorRobert PasseleweSuccessorJohn ClimpingOther post(s)Vicar of DealPersonal detailsBornRichardc. 1197Droitwich, Worcestershire, EnglandDied3 April 1253Dover, Kent, EnglandDenominationCatholicSainthoodFeast day3 Ap...

Species of plant Oldman saltbush Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Order: Caryophyllales Family: Amaranthaceae Genus: Atriplex Species: A. nummularia Binomial name Atriplex nummulariaLindl. Occurrence data ALA[1] Synonyms Atriplex johnstoni Atriplex nummularia is a species of saltbush from the family Amaranthaceae[2] and is a large woody shrub known commonly as oldman saltbush.[3] A. nummularia is na...

Düzce Nummer der Provinz: 81 Landkreise Basisdaten Koordinaten: 40° 57′ N, 31° 14′ O40.94694444444431.238055555556Koordinaten: 40° 57′ N, 31° 14′ O Provinzhauptstadt: Düzce Region: Schwarzmeerregion Fläche: 2.492 km² km² Einwohnerzahl: 395.679[1] (2020) Bevölkerungsdichte: 158,8 Einwohner/km² Politisches Gouverneur: Cevdet Atay[2] Sitze im Parlament: 3 Strukturelles Telefonvorwahl: 0380 Kennzeichen: 81 Website www...

British painter Mandy PaynePayne in her studioBorn1964 (age 58–59)Pontypool, WalesNationalityBritishOccupationArtistWebsitewww.mandypayneart.co.uk Mandy Payne (born 1964) is a member of the Contemporary British Painting group and is an artist with a primary interest in portraying the regeneration of inner city environments and the transitory nature of urban communities. Her themes include the contrasts between twentieth century inner-city social housing and modern gentrification.&#...

This article contains text that is written in a promotional tone. Please help improve it by removing promotional language and inappropriate external links, and by adding encyclopedic text written from a neutral point of view. (February 2020) (Learn how and when to remove this template message) TicketcleverIndustryTravelFounded2016HeadquartersOxford, EnglandNumber of locationsOxford, London, Cape TownArea servedUnited KingdomKey peopleJeremy Acklam (CEO)ServicesTrain ticketsOwnerGlobal Travel ...

Gallery of Maps Gallery of Mapsclass=notpageimage| Location on a map of Vatican City Gallery of Maps The Gallery of Maps[1] (Italian: Galleria delle carte geografiche) is a gallery located on the west side of the Belvedere Courtyard in the Vatican containing a series of painted topographical maps of Italy based on drawings by friar and geographer Ignazio Danti.[1] The gallery was commissioned in 1580 by Pope Gregory XIII as part of other artistic works commissioned by the Pope...

Questa voce sull'argomento calciatori cechi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jiří Klíma Nazionalità  Rep. Ceca Altezza 189 cm Peso 86 kg Calcio Ruolo Attaccante Squadra  Baník Ostrava Carriera Giovanili 2004-2006 Slavoj Polná2006-2016 Vysočina Jihlava Squadre di club1 2016 Vysočina Jihlava1 (0)2016-2017→  Znojmo25 (6)2017-2019 Vysočina Jihlava...

Open source .NET platform .NET Micro FrameworkDeveloper(s)Microsoft and .NET FoundationInitial release2007; 16 years ago (2007)Stable release4.4[1] / October 20, 2015; 8 years ago (2015-10-20) Repositorygithub.com/NETMF/netmf-interpreterWritten inC++Operating systemWindowsPlatformARM, BlackfinAvailable inEnglishTypeSoftware frameworkLicenseApache License 2.0[2]Websitenetmf.github.io/netmf-interpreter/ The .NET Micro Framework (NETMF) is a .N...

Pedro Álvares CabralPedro Álvares Cabral ketika berusia 32-33 tahun dalam sebuah lukisan abad ke-20 awal. Tidak ada potret Cabral pada masanya yang diketahui keberadaannya.[1]Lahir1467 atau 1468Belmonte, PortugalMeninggal1520 – 1467; umur -54–-53 tahunSantarém, PortugalNama lain Pero Álvares Cabral Pedr'Álváres Cabral Pedrálvares Cabral Pedraluarez Cabral PekerjaanKomandan armada kapal untuk PortugalSuami/istriIsabel de CastroAnak Fernão Álvares Cabral A...

Brandon Frazier Brandon Frazier nel 2019 Nazionalità  Stati Uniti Altezza 189 cm Pattinaggio di figura Specialità Pattinaggio artistico su ghiaccio a coppie Palmarès Competizione Ori Argenti Bronzi Olimpiadi 0 1 0 Mondiali juniores 1 0 0 Per maggiori dettagli vedi qui Statistiche aggiornate al 21 febbraio 2022 Modifica dati su Wikidata · Manuale Brandon Michael Frazier (Phoenix, 19 novembre 1992) è un pattinatore artistico su ghiaccio statunitense vicecampione olimpico in c...

Glynis BarberBarber, 2007LahirGlynis van der Riet25 Oktober 1955 (umur 68)Durban, Afrika SelatanPekerjaanAktrisTahun aktif1978–presentSuami/istriPaul Antony-Barber ​ ​(m. 1976; c. 1979)​ Michael Brandon ​ ​(m. 1989)​Anak1Situs webwww.glynisbarber.com Glynis Barber (nee Glynis van der Riet;[1] lahir 25 Oktober 1955) adalah seorang aktris berkebangsaan Afrika Selatan. Dia dikenal karena peran...

Mercury Tracer on Mercuryn vuosina 1987–1999 Pohjois-Amerikan markkinoille valmistama keskiluokan automalli, joka korvasi Mercury Lynxin. Sisällys 1 Mercury Tracer I (1987–1989) 2 Mercury Tracer II (1990–1996) 3 Mercury Tracer III (1996–1999) 4 Lähteet 5 Aiheesta muualla Mercury Tracer I (1987–1989) Mercury Tracer I Valmistustiedot Valmistusmaa  Japani Meksiko Taiwan Valmistaja Mercury Konserni Ford Motor Company Valmistusvuodet 1987–1989 Korimalli 3-ovinen hatchb...

Kartamyshevska StreetM. Raskova StreetView from Holokovska Street, 7 June 2017Native nameвулиця Картамишевська (Ukrainian)NamesakeKartamyshevPostal code65091Coordinates46°28′13.7″N 30°42′43.7″E / 46.470472°N 30.712139°E / 46.470472; 30.712139From46°28′13″N 30°43′00″E / 46.470157°N 30.7167°E / 46.470157; 30.7167To46°28′15″N 30°42′31″E / 46.47083°N 30.70853°E / 46...

Paghimo ni bot Lsjbot. Dicranum leioneuron Siyentipikinhong Pagklasipikar Kaginharian: Plantae Kabahig: Bryophyta Kahutong: Bryopsida Kahanay: Dicranales Kabanay: Dicranaceae Kahenera: 'Dicranum' Espesye: ''Dicranum leioneuron'' Siyentipikinhong Ngalan Dicranum leioneuronKindberg, 1889 Kaliwatan sa lumot ang Dicranum leioneuron.[1] Una ning gihulagway ni Kindberg ni adtong 1889.[2] Ang Dicranum leioneuron sakop sa kahenera nga Dicranum, ug kabanay nga Dicranaceae.[1]&#...