Degree (graph theory)

A graph with a loop having vertices labeled by degree

In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge.[1] The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In a regular graph, every vertex has the same degree, and so we can speak of the degree of the graph. A complete graph (denoted , where is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, .

In a signed graph, the number of positive edges connected to the vertex is called positive deg and the number of connected negative edges is entitled negative deg.[2][3]

Handshaking lemma

The degree sum formula states that, given a graph ,

.

The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd number of other people from the group is even.[4]

Degree sequence

Two non-isomorphic graphs with the same degree sequence (3, 2, 2, 2, 2, 1, 1, 1).

The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees;[5] for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non-isomorphic graphs have the same degree sequence.

The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.) A sequence which is the degree sequence of some graph, i.e. for which the degree sequence problem has a solution, is called a graphic or graphical sequence. As a consequence of the degree sum formula, any sequence with an odd sum, such as (3, 3, 1), cannot be realized as the degree sequence of a graph. The inverse is also true: if a sequence has an even sum, it is the degree sequence of a multigraph. The construction of such a graph is straightforward: connect vertices with odd degrees in pairs (forming a matching), and fill out the remaining even degree counts by self-loops. The question of whether a given degree sequence can be realized by a simple graph is more challenging. This problem is also called graph realization problem and can be solved by either the Erdős–Gallai theorem or the Havel–Hakimi algorithm. The problem of finding or estimating the number of graphs with a given degree sequence is a problem from the field of graph enumeration.

More generally, the degree sequence of a hypergraph is the non-increasing sequence of its vertex degrees. A sequence is -graphic if it is the degree sequence of some -uniform hypergraph. In particular, a -graphic sequence is graphic. Deciding if a given sequence is -graphic is doable in polynomial time for via the Erdős–Gallai theorem but is NP-complete for all .[6]

Special values

An undirected graph with leaf nodes 4, 5, 6, 7, 10, 11, and 12
  • A vertex with degree 0 is called an isolated vertex.
  • A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures.
  • A vertex with degree n − 1 in a graph on n vertices is called a dominating vertex.

Global properties

  • If each vertex of the graph has the same degree k, the graph is called a k-regular graph and the graph itself is said to have degree k. Similarly, a bipartite graph in which every two vertices on the same side of the bipartition as each other have the same degree is called a biregular graph.
  • An undirected, connected graph has an Eulerian path if and only if it has either 0 or 2 vertices of odd degree. If it has 0 vertices of odd degree, the Eulerian path is an Eulerian circuit.
  • A directed graph is a directed pseudoforest if and only if every vertex has outdegree at most 1. A functional graph is a special case of a pseudoforest in which every vertex has outdegree exactly 1.
  • By Brooks' theorem, any graph G other than a clique or an odd cycle has chromatic number at most Δ(G), and by Vizing's theorem any graph has chromatic index at most Δ(G) + 1.
  • A k-degenerate graph is a graph in which each subgraph has a vertex of degree at most k.

See also

Notes

  1. ^ Diestel, Reinhard (2005). Graph Theory (3rd ed.). Berlin, New York: Springer-Verlag. pp. 5, 28. ISBN 978-3-540-26183-4.
  2. ^ Ciotti, Valerio; Bianconi, Giestra; Capocci, Andrea; Colaiori, Francesca; Panzarasa, Pietro (2015). "Degree correlations in signed social networks". Physica A: Statistical Mechanics and Its Applications. 422: 25–39. arXiv:1412.1024. Bibcode:2015PhyA..422...25C. doi:10.1016/j.physa.2014.11.062. S2CID 4995458. Archived from the original on 2021-10-02. Retrieved 2021-02-10.
  3. ^ Saberi, Majerid; Khosrowabadi, Reza; Khatibi, Ali; Misic, Bratislav; Jafari, Gholamreza (January 2021). "Topological impact of negative links on the stability of resting-state brain network". Scientific Reports. 11 (1): 2176. Bibcode:2021NatSR..11.2176S. doi:10.1038/s41598-021-81767-7. PMC 7838299. PMID 33500525.
  4. ^ Grossman, Peter (2009). Discrete Mathematics for Computing. Bloomsbury. p. 185. ISBN 978-0-230-21611-2.
  5. ^ Diestel (2005), p. 216.
  6. ^ Deza, Antoine; Levin, Asaf; Meesum, Syed M.; Onn, Shmuel (January 2018). "Optimization over Degree Sequences". SIAM Journal on Discrete Mathematics. 32 (3): 2067–2079. arXiv:1706.03951. doi:10.1137/17M1134482. ISSN 0895-4801. S2CID 52039639.

References

Read other articles:

Deno Kamelus Bupati Manggarai ke-7Masa jabatan17 Februari 2016 – 17 Februari 2021PresidenJoko WidodoGubernurFrans Lebu RayaRobert Simbolon (Pj.)WakilVictor Madur PendahuluChristian RotokMarius Jelamu (Pj.)PenggantiJahang Fansi Aldus (Plh.)Herybertus G.L. NabitWakil Bupati Manggarai ke-2Masa jabatan14 September 2005 – 14 September 2015PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurPiet Alexander TalloFrans Lebu RayaBupatiChristian Rotok PendahuluMarkus JadurPe...

 

 

Mozaik pada abad ke-2 Dewa Apollo di El Djem, Tunisia. Dewa Matahari adalah dewa atau dewi dalam mitologi yang mewakili Matahari, atau aspek dari matahari, biasanya kekuatan yang dirasakan dan kekuatan. Dewa dan penyembahan Matahari dapat ditemukan di sebagian besar sejarah yang tercatat dalam berbagai bentuk. Matahari yang menghilang Amaterasu akhirnya muncul dari gua Hilangnya matahari adalah tema dalam banyak mitologi, kadang-kadang termasuk tema-tema penjara, pengasingan, atau kematian. K...

 

 

Arena Qudos BankBerkas:Qudos Bank Arena logo.pngEksterior Arena dari Olympic Bvd (c. 2016)Nama lamaSydney Super Dome (1999–2006)Acer Arena (2006–11)Allphones Arena (2011–16)AlamatOlympic Bvd and Edwin Flack AvenueSydney NSW 2127AustraliaLokasiSydney Olympic Park (Map)Koordinat33°51′S 151°04′E / 33.850°S 151.067°E / -33.850; 151.067Koordinat: 33°51′S 151°04′E / 33.850°S 151.067°E / -33.850; 151.067PemilikTEG LiveOperatorASM ...

Constituency of Bangladesh's Jatiya Sangsad Tangail-7Constituencyfor the Jatiya SangsadDistrictTangail DistrictDivisionDhaka DivisionElectorate322,673 (2018)[1]Current constituencyCreated1973PartyAwami LeagueMember(s)Khan Ahmed Shuvo Tangail-7 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh by Khan Ahmed Shuvo. Since 2001 it was represented by Md. Akabbar Hossain of the Awami League. Boundaries The constituency encompasses Mirzapur Upazila.[...

 

 

Dalam nama Korean ini, nama keluarganya adalah Kim. Kim Ji-hoJiho pada saat acara penandatanganan penggemar yang diadakan di Distrik GuroLahirKim Ji-ho04 April 1997 (umur 27)Okcheon, Chungcheong Utara, Korea SelatanPekerjaanPenyanyi, penariKarier musikGenreK-popInstrumenVokalTahun aktif2015–sekarangLabel WM Entertainment (2015-2022) Jiho (Hangul: 지호) atau Kim Ji-ho (Hangul: 김지호, lahir 4 April 1997)[1] adalah mantan anggota dan salah satu vokalis utama dari grup Oh My ...

 

 

Kupu-kupu Rhopalocera Papilio machaon (en) TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoLepidopteraUpaordoRhopalocera Superfamili Hedyloidea: Hedylidae Superfamili Hesperioidea: Hesperiidae Superfamili Papilionoidea: Papilionidae Pieridae Nymphalidae Lycaenidae Riodinidae lbs Kupu-kupu Appias libythea, mengisap nektar Bidens sp. Kupu-kupu atau rama-rama merupakan serangga yang tergolong ke dalam ordo Lepidoptera, atau 'serangga bersayap sisik' (lepis, sisik dan pteron, sayap). Kupu...

TELE+ Stato  Italia Tipologia Piattaforma terrestre Trasmissione Pay TV Editore Telepiù S.p.A. Gruppo News Corporation Data di lancio 9 agosto 1990 Data di chiusura 31 luglio 2003 Sostituita da Sky Italia Sede principale Milano Nº abbonati 180.000 (13 gennaio 2003, [1]) Sito telepiu.it Dati tecnici Lingua Italiano Inglese Nº canali 2 Standard PAL-G Codifica Irdeto TELE+ è stata una piattaforma televisiva a pagamento per la televisione analogica terrestre fornita da Telepiù ...

 

 

Questa voce sugli argomenti Santi francesi e Storia della Francia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Beati Jean-Baptiste Souzy e 63 compagni martiriLa croce di ciottoli realizzata dai devoti a Île Madame per i martiri dei pontoni Morte1794-1795 Venerato daChiesa cattolica Beatificazione1º ottobre 1995 da papa Giovanni Paolo II Manuale I martiri dei pontoni di Rochefort sono un gruppo di 829 tra sacerdoti e religiosi tenuti prigioni...

 

 

Cinema ofFrance 1892–1909 1910s 1910 1911 1912 1913 19141915 1916 1917 1918 1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19...

Football match1912 FA Cup FinalEvent1911–12 FA Cup Barnsley West Bromwich Albion Barnsley won after a replayFinal Barnsley West Bromwich Albion 0 0 Date20 April 1912VenueCrystal Palace, LondonRefereeJ.R. SchumacherAttendance54,434Replay Barnsley West Bromwich Albion 1 0 After extra timeDate24 April 1912VenueBramall Lane, SheffieldRefereeJ.R. SchumacherAttendance38,555← 1911 1913 → The 1912 FA Cup final was the 41st FA Cup final. It was contested by Barnsley and West Bromwich Al...

 

 

Palazzo Borromeo d'AddaLa lunga facciata su via Manzoni del palazzoLocalizzazioneStato Italia LocalitàMilano Indirizzovia Manzoni, 39/41 Coordinate45°28′17.17″N 9°11′37.43″E / 45.471437°N 9.19373°E45.471437; 9.19373Coordinate: 45°28′17.17″N 9°11′37.43″E / 45.471437°N 9.19373°E45.471437; 9.19373 Informazioni generaliCondizioniIn uso CostruzioneXVIII secolo RicostruzioneXIX secolo StileNeoclassico RealizzazioneArchitettoGirolamo Arga...

 

 

Pour les articles homonymes, voir Polos. Cet article est une ébauche concernant l’astronomie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Polos ou scaphéType Instrument d'astronomiemodifier - modifier le code - modifier Wikidata Un polos, (grec ancien voûte céleste ) est un instrument astronomique antique constitué d'une tige verticale (gnomon) fichée au centre d'un hémisphère concave creusé dans ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

لازلو بودروجي (بالفرنسية: László Bodrogi)‏  معلومات شخصية الميلاد 11 ديسمبر 1976 (العمر 47 سنة)بودابست الطول 1.87 م (6 قدم 2 بوصة)* الجنسية  فرنسا الوزن 79 كـغ (174 رطل) الحياة العملية الدور دراج الفرق دكونيك كويك ستب (2003–2004)كاتوشا (2009–2010)تيم نوفو نورديسك  [لغات أخرى]&#...

 

 

الكرة الطائرة في الألعاب الأولمبية الصيفية المكان أرياك أرينا (صالات)شيوكازا بارك (شاطئية) التواريخ 24 يوليو – 8 أغسطس 2021 عدد المنافسات 4 تعديل مصدري - تعديل   أقيمت بطولات الكرة الطائرة ضمن فعاليات الألعاب الأولمبية الصيفية 2020 التي أقيمت في طوكيو بين 24 يوليو و8 أغسطس 2021. ش�...

Bosnia MudaMlada BosnaSejumlah anggotaTanggal pendirian1911TipeOrganisasi revolusionerTujuanPembentukan Yugoslavia melalui penyatuan Bosnia dan Herzegovina dengan SerbiaTokoh pentingGavrilo PrincipAfiliasiNarodna Odbrana dan Tangan Hitam Bosnia Muda (Serbo-Kroasia: Mlada Bosna/Млада Босна) adalah gerakan revolusioner yang aktif di Kondominium Bosnia dan Herzegovina sebelum Perang Dunia I. Anggotanya kebanyakan adalah Serb Bosnia, dan juga Muslim Bosnia dan Kroat Bosnia. Ada dua ideo...

 

 

جزء من سلسلة مقالات حولأهل السنة والجماعة العقائد السُنيَّة توحيد الله الإيمان بالملائكة الإيمان بالكتب السماوية الإيمان بالرسل والأنبياء الإيمان باليوم الآخر الإيمان بالقضاء والقدر شخصيات محورية مُحمَّد رسول الله الأنبياء والصالحين العشرة المبشرون بالجنة الخُلفاء ا�...

 

 

Anak MentengGenre Drama Roman Laga Komedi PembuatAmanah Surga ProductionsDitulis oleh Hevoia [a] Dilovi Kahil [b] Skenario Hevoia [c] Dilovi Kahil [d] SutradaraAi ManafPemeran Lucky Perdana Christ Laurent Melodi Prima Ari Wibowo Baron Yusuf Joy Octaviano Niki Tirta Ricky Cuaca Reza Aditya Yuco Avarro Atiq Rahmant Voke Victoria Jill Gladys Verlita Evelyn Ratu Felisha Benny Ruswandi Claudy Putry Nina Jane Penggubah lagu temaJamrudLagu pembukaBerkait Rakit oleh J...

渦輪方程式Turbo電影海報基本资料导演David Soren监制Lisa Stewart编剧David SorenRobert SiegelDarren Lemke主演萊恩·雷諾斯保罗·吉亚玛提迈克尔·佩纳路易斯·古兹曼比尔·哈德尔理查德·詹金斯鄭肯米歇尔·罗德里格兹玛雅·鲁道夫史努比狗狗森姆·L·積遜配乐哈里·杰克曼剪辑James Ryan制片商夢工場動畫片长96 分钟产地 美国[1]语言英語上映及发行上映日期 2013年7月17日 2013年7月18...

 

 

Джош ГробанJosh Groban Основная информация Полное имя Joshua Winslow Groban Дата рождения 27 февраля 1981(1981-02-27) (43 года) Место рождения Лос-Анджелес, Калифорния, США Страна  США Профессии певец, актёр, музыкант Годы активности с 1997 Певческий голос баритон Инструменты ударн...