Incenter

The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle.

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

Together with the centroid, circumcenter, and orthocenter, it is one of the four triangle centers known to the ancient Greeks, and the only one of the four that does not in general lie on the Euler line. It is the first listed center, X(1), in Clark Kimberling's Encyclopedia of Triangle Centers, and the identity element of the multiplicative group of triangle centers.[1][2]

For polygons with more than three sides, the incenter only exists for tangential polygons: those that have an incircle that is tangent to each side of the polygon. In this case the incenter is the center of this circle and is equally distant from all sides.

Definition and construction

It is a theorem in Euclidean geometry that the three interior angle bisectors of a triangle meet in a single point. In Euclid's Elements, Proposition 4 of Book IV proves that this point is also the center of the inscribed circle of the triangle. The incircle itself may be constructed by dropping a perpendicular from the incenter to one of the sides of the triangle and drawing a circle with that segment as its radius.[3]

The incenter lies at equal distances from the three line segments forming the sides of the triangle, and also from the three lines containing those segments. It is the only point equally distant from the line segments, but there are three more points equally distant from the lines, the excenters, which form the centers of the excircles of the given triangle. The incenter and excenters together form an orthocentric system.[4]

The medial axis of a polygon is the set of points whose nearest neighbor on the polygon is not unique: these points are equidistant from two or more sides of the polygon. One method for computing medial axes is using the grassfire transform, in which one forms a continuous sequence of offset curves, each at some fixed distance from the polygon; the medial axis is traced out by the vertices of these curves. In the case of a triangle, the medial axis consists of three segments of the angle bisectors, connecting the vertices of the triangle to the incenter, which is the unique point on the innermost offset curve.[5] The straight skeleton, defined in a similar way from a different type of offset curve, coincides with the medial axis for convex polygons and so also has its junction at the incenter.[6]

Proofs

Ratio proof

Let the bisection of and meet at , and the bisection of and meet at , and and meet at .

And let and meet at .

Then we have to prove that is the bisection of .

In , , by the Angle bisector theorem.

In , .

Therefore, , so that .

So is the bisection of .

Perpendicular proof

A line that is an angle bisector is equidistant from both of its lines when measuring by the perpendicular. At the point where two bisectors intersect, this point is perpendicularly equidistant from the final angle's forming lines (because they are the same distance from this angles opposite edge), and therefore lies on its angle bisector line.

Relation to triangle sides and vertices

Trilinear coordinates

The trilinear coordinates for a point in the triangle give the ratio of distances to the triangle sides. Trilinear coordinates for the incenter are given by[2]

The collection of triangle centers may be given the structure of a group under coordinatewise multiplication of trilinear coordinates; in this group, the incenter forms the identity element.[2]

Barycentric coordinates

The barycentric coordinates for a point in a triangle give weights such that the point is the weighted average of the triangle vertex positions. Barycentric coordinates for the incenter are given by

where , , and are the lengths of the sides of the triangle, or equivalently (using the law of sines) by

where , , and are the angles at the three vertices.

Cartesian coordinates

The Cartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter—i.e., using the barycentric coordinates given above, normalized to sum to unity—as weights. (The weights are positive so the incenter lies inside the triangle as stated above.) If the three vertices are located at , , and , and the sides opposite these vertices have corresponding lengths , , and , then the incenter is at

Distances to vertices

Denoting the incenter of triangle ABC as I, the distances from the incenter to the vertices combined with the lengths of the triangle sides obey the equation[7]

Additionally,[8]

where R and r are the triangle's circumradius and inradius respectively.

Other centers

The distance from the incenter to the centroid is less than one third the length of the longest median of the triangle.[9]

By Euler's theorem in geometry, the squared distance from the incenter I to the circumcenter O is given by[10][11]

where R and r are the circumradius and the inradius respectively; thus the circumradius is at least twice the inradius, with equality only in the equilateral case.[12]: p. 198 

The distance from the incenter to the center N of the nine point circle is[11]

The squared distance from the incenter to the orthocenter H is[13]

Inequalities include:

The incenter is the Nagel point of the medial triangle (the triangle whose vertices are the midpoints of the sides) and therefore lies inside this triangle. Conversely the Nagel point of any triangle is the incenter of its anticomplementary triangle.[14]

The incenter must lie in the interior of a disk whose diameter connects the centroid G and the orthocenter H (the orthocentroidal disk), but it cannot coincide with the nine-point center, whose position is fixed 1/4 of the way along the diameter (closer to G). Any other point within the orthocentroidal disk is the incenter of a unique triangle.[15]

Euler line

The Euler line of a triangle is a line passing through its circumcenter, centroid, and orthocenter, among other points. The incenter generally does not lie on the Euler line;[16] it is on the Euler line only for isosceles triangles,[17] for which the Euler line coincides with the symmetry axis of the triangle and contains all triangle centers.

Denoting the distance from the incenter to the Euler line as d, the length of the longest median as v, the length of the longest side as u, the circumradius as R, the length of the Euler line segment from the orthocenter to the circumcenter as e, and the semiperimeter as s, the following inequalities hold:[18]

Area and perimeter splitters

Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter; every line through the incenter that splits the area in half also splits the perimeter in half. There are either one, two, or three of these lines for any given triangle.[19]

Relative distances from an angle bisector

Let X be a variable point on the internal angle bisector of A. Then X = I (the incenter) maximizes or minimizes the ratio along that angle bisector.[20][21]

References

  1. ^ Kimberling, Clark (1994), "Central Points and Central Lines in the Plane of a Triangle", Mathematics Magazine, 67 (3): 163–187, doi:10.1080/0025570X.1994.11996210, JSTOR 2690608, MR 1573021.
  2. ^ a b c Encyclopedia of Triangle Centers Archived 2012-04-19 at the Wayback Machine, accessed 2014-10-28.
  3. ^ Euclid's Elements, Book IV, Proposition 4: To inscribe a circle in a given triangle. David Joyce, Clark University, retrieved 2014-10-28.
  4. ^ Johnson, R. A. (1929), Modern Geometry, Boston: Houghton Mifflin, p. 182.
  5. ^ Blum, Harry (1967), "A transformation for extracting new descriptors of shape", in Wathen-Dunn, Weiant (ed.), Models for the Perception of Speech and Visual Form (PDF), Cambridge: MIT Press, pp. 362–380, In the triangle three corners start propagating and disappear at the center of the largest inscribed circle.
  6. ^ Aichholzer, Oswin; Aurenhammer, Franz; Alberts, David; Gärtner, Bernd (1995), "A novel type of skeleton for polygons", Journal of Universal Computer Science, 1 (12): 752–761, doi:10.1007/978-3-642-80350-5_65, MR 1392429.
  7. ^ Allaire, Patricia R.; Zhou, Junmin; Yao, Haishen (March 2012), "Proving a nineteenth century ellipse identity", Mathematical Gazette, 96 (535): 161–165, doi:10.1017/S0025557200004277.
  8. ^ Altshiller-Court, Nathan (1980), College Geometry, Dover Publications. #84, p. 121.
  9. ^ Franzsen, William N. (2011), "The distance from the incenter to the Euler line" (PDF), Forum Geometricorum, 11: 231–236, MR 2877263, archived from the original (PDF) on 2020-12-05, retrieved 2014-10-28. Lemma 3, p. 233.
  10. ^ Johnson (1929), p. 186
  11. ^ a b Franzsen (2011), p.  232.
  12. ^ Dragutin Svrtan and Darko Veljan, "Non-Euclidean versions of some classical triangle inequalities", Forum Geometricorum 12 (2012), 197–209. http://forumgeom.fau.edu/FG2012volume12/FG201217index.html Archived 2019-10-28 at the Wayback Machine
  13. ^ Marie-Nicole Gras, "Distances between the circumcenter of the extouch triangle and the classical centers" Forum Geometricorum 14 (2014), 51-61. http://forumgeom.fau.edu/FG2014volume14/FG201405index.html Archived 2021-04-28 at the Wayback Machine
  14. ^ Franzsen (2011), Lemma 1, p.  233.
  15. ^ Franzsen (2011), p. 232.
  16. ^ Schattschneider, Doris; King, James (1997), Geometry Turned On: Dynamic Software in Learning, Teaching, and Research, The Mathematical Association of America, pp. 3–4, ISBN 978-0883850992
  17. ^ Edmonds, Allan L.; Hajja, Mowaffaq; Martini, Horst (2008), "Orthocentric simplices and biregularity", Results in Mathematics, 52 (1–2): 41–50, doi:10.1007/s00025-008-0294-4, MR 2430410, S2CID 121434528, It is well known that the incenter of a Euclidean triangle lies on its Euler line connecting the centroid and the circumcenter if and only if the triangle is isosceles.
  18. ^ Franzsen (2011), pp. 232–234.
  19. ^ Kodokostas, Dimitrios (April 2010), "Triangle equalizers", Mathematics Magazine, 83 (2): 141–146, doi:10.4169/002557010X482916, S2CID 218541138.
  20. ^ Arie Bialostocki and Dora Bialostocki, "The incenter and an excenter as solutions to an extremal problem", Forum Geometricorum 11 (2011), 9-12. http://forumgeom.fau.edu/FG2011volume11/FG201102index.html
  21. ^ Hajja, Mowaffaq, Extremal properties of the incentre and the excenters of a triangle", Mathematical Gazette 96, July 2012, 315-317.

Read other articles:

Pendar hayati yang dihasilkan jamur Panellus Stipticus. Jamur mengeluarkan cahaya hijau di malam hari untuk menarik serangga dalam membantu menyebarkan spora jamur. Ikon flora Taman Nasional Gunung Halimun Salak di Jawa Barat ini dikenal masyarakat setempat dengan sebutan “Supa Lumar”. Bioluminesensi atau pendar hayati[1] adalah emisi cahaya yang dihasilkan oleh makhluk hidup karena adanya reaksi kimia tertentu.[2] Hingga saat ini, bioluminesensi telah ditemukan secara ala...

 

 

  لمعانٍ أخرى، طالع كورنينغ (توضيح). كورنينغ     الإحداثيات 39°55′34″N 122°10′50″W / 39.926111111111°N 122.18055555556°W / 39.926111111111; -122.18055555556  تاريخ التأسيس 6 أغسطس 1907  تقسيم إداري  البلد الولايات المتحدة[1][2]  التقسيم الأعلى مقاطعة تيهاما  خصائص جغرافية...

 

 

Le Maine, partagé en Bas-Maine à l'ouest, et Haut-Maine à l'est. Le Bas-Maine est la partie occidentale de l'ancienne province du Maine. La région est communément assimilée au département de la Mayenne, tout du moins à ses trois quarts nord, la frange sud du département faisant historiquement partie de l'Anjou. Le nom de Bas-Maine a été donné à une unité paysagère contemporaine par la Direction régionale de l'Environnement, de l'Aménagement et du Logement des Pays de la Loire...

Peta Azerbaijan yang menunjukan rayon Yardimli. Alam di Rayon Yardımlı Air terjun di Rayon Yardımlı Yardymli (Yardımlı) adalah sebuah rayon di Azerbaijan. Ibu kota rayon ini berada di Kota Yardmymli. lbsPembagian administratif Azerbaijan Distrik Absheron Agdam Agdash Aghjabadi Agstafa Agsu Astara Babek Balakan Barda Beylagan Bilasuvar Dashkasan Fuzuli Gadabay Goranboy Goychay Goygol Hajigabul Imishli Ismayilli Jabrayil Jalilabad Julfa Kalbajar Kangarli Khachmaz Khizi Khojaly Khojavend K...

 

 

French figure skater, surgeon, and politician Alain CalmatAlain Calmat at the 1964 World ChampionshipsBorn (1940-08-31) 31 August 1940 (age 83)Paris, FranceFigure skating careerCountryFranceRetired1965 Medal record Representing  France Men's figure skating Olympic Games 1964 Innsbruck Men's singles World Championships 1965 Colorado Springs Men's singles 1964 Dortmund Men's singles 1963 Cortina d'Ampezzo Men's singles 1962 Prague Men's singles 1960 Vancouver Men's singles European Ch...

 

 

Constituency of the National Assembly of Pakistan NA-229 Karachi Malir-IConstituencyfor the National Assembly of PakistanRegionGadap Town (partly), Ibrahim Hyderi Town (partly), Shah Mureed, Bin Qasim Town and Murad Memon Town of Malir District in KarachiElectorate232,437 [1]Current constituencyMember(s)VacantCreated fromNA-258 Karachi-XX NA-229 Karachi Malir-I (این اے-229، کراچی ملیر-1) is a constituency for the National Assembly of Pakistan.[2] Members of Parl...

Scholastique MukasongaBiographieNaissance 20 décembre 1956 (67 ans)Province de Gikongoro (Ruanda-Urundi)Nationalités rwandaisefrançaiseActivité ÉcrivaineAutres informationsSite web scholastiquemukasonga.net/frDistinctions Liste détailléePrix Renaudot (2012)Prix Ahmadou-Kourouma (2012)Prix Simone-de-Beauvoir pour la liberté des femmes (2021)Chevalier des Arts et des LettresŒuvres principales Notre-Dame du Nil, La femme au pieds nus (d)modifier - modifier le code - modifier Wikida...

 

 

Peta Romania dengan wilayah Transylvania yang ditandai dengan warna kuning. Transilvania (juga Ardeal; bahasa Hongaria: Erdély; bahasa Jerman: Siebenbürgenⓘ; bahasa Bulgaria: Трансилвания; bahasa Serbia: Трансилванија / Transilvanija atau Ердељ / Erdelj; bahasa Latin: Transsilvania) adalah wilayah historis di Romania tengah dan barat. Pada awal sejarah, teritori Transilvania masuk ke dalam wilayah Dacia, kekaisaran Romawi, kekaisaran Hun, kera...

 

 

2022 anime television series Legend of Mana: The Teardrop CrystalKey visual聖剣伝説 —THE TEARDROP CRYSTAL—(Seiken Densetsu: The Teardrop Crystal)Created bySquare Enix Anime television seriesDirected byMasato JinboWritten byMasato JinboMusic byYoko ShimomuraStudioYokohama Animation LaboratoryGraphinicaLicensed byCrunchyroll SEA: Muse CommunicationOriginal networkMBS, TBSOriginal run October 8, 2022 – December 24, 2022Episodes12 (List of episodes) Legend of Ma...

Sinotrans&CSC GroupCompany typeState-owned enterpriseIndustryShipping and LogisticsFounded2008HeadquartersBeijing, People's Republic of ChinaArea servedWorldKey peopleExecutive Director and President: Song Dexing[1]Revenue89.044 billion renminbi (2015)[2]Number of employees51,511 (2015)[2]Websitewww.sinotrans-csc.com Sinotrans Changhang, or Sinotrans&CSC Holdings, is the largest logistics company of the People's Republic of China, with further interests in ship...

 

 

2000 television filmThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Up, Up and Away film – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this message) Up, Up and AwayFilm posterGenreFantasyComedyWritten byDaniel BerendsenDirected byRobert TownsendStarringRobert Tow...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Würzburg Fortress Marienberg dengan Old Main Bridge di bagiand depan Lambang kebesaranLetak Würzburg NegaraJermanNegara bagianBayernWilayahLower FranconiaKreisDistrik perkotaanPemerintahan • MayorGeorg Rosenthal (SPD)Luas • Total87,63 km2 (3,383 sq mi)Ketinggian177 m (581 ft)Populasi (2013-12-31)[1] • Total124.698 • Kepadatan14/km2 (37/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97018–97084Kode area...

 

 

Genus of flowering plants Barbeya Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Rosales Family: BarbeyaceaeRendle[1] Genus: BarbeyaSchweinf. ex Penzig Species: B. oleoides Binomial name Barbeya oleoidesSchweinf. Barbeya is the only genus in the family Barbeyaceae, and has only one species, Barbeya oleoides. It is a small tree native to the mountains of Somalia, Ethiopia, and the Arabian Peninsula. It can be...

 

 

Pour les articles homonymes, voir Gravity. Gravity Données clés Réalisation Alfonso Cuarón Scénario Alfonso CuarónJonás CuarónRodrigo García Musique Steven Price Acteurs principaux Sandra BullockGeorge Clooney Sociétés de production Esperanto FilmojReality MediaWarner Bros.Heyday Films Pays de production États-Unis Royaume-Uni Genre Action, drame, science-fiction, catastrophe, thriller Durée 91 minutes Sortie 2013 Pour plus de détails, voir Fiche technique et Distribution. modi...

Town in Region Nordjylland, DenmarkStøvringTownStøvring churchStøvringLocation in DenmarkShow map of DenmarkStøvringStøvring (North Jutland Region)Show map of North Jutland RegionCoordinates: 56°53′12″N 9°49′43″E / 56.88667°N 9.82861°E / 56.88667; 9.82861Country DenmarkRegionRegion NordjyllandMunicipalityRebildFoundationAround 17th centuryArea • Urban6.2 km2 (2.4 sq mi)Population (2024)[1] • Urba...

 

 

Virtuix OmniImage of Virtuix Omni.InventorJan GoetgelukManufacturerVirtuix Inc.Current supplierenterprise.virtuix.com/commercial-inquiries/Websitewww.virtuix.comNotesReleased January 2017 The Virtuix Omni is an omnidirectional treadmill simulator for virtual reality games and other applications. It uses a platform to simulate locomotion i.e. the motion of walking, requiring both special shoes or shoe covers and a surface that reduces friction. It works in conjunction with the HTC Vive, and a...

 

 

Overview of and topical guide to war The following outline is provided as an overview of and topical guide to war: War – organised and often prolonged armed conflict that is carried out by states or non-state actors – is characterised by extreme violence, social disruption, and economic destruction.[1][2] War should be understood as an actual, intentional and widespread armed conflict between political communities, and therefore is defined as a form of political violence o...

Airport in Paraná, Argentina General Justo José de Urquiza AirportAeropuerto de Entre Ríos General Justo José de UrquizaIATA: PRAICAO: SAAPSummaryAirport typePublic / MilitaryOperatorAeropuertos Argentina 2000LocationParaná, ArgentinaElevation AMSL243 ft / 74 mCoordinates31°47′40″S 60°28′49″W / 31.79444°S 60.48028°W / -31.79444; -60.48028MapPRALocation of airport in ArgentinaRunways Direction Length Surface m ft 02/20 2,100 6,890 Asphalt...

 

 

Place of burial For other uses, see Cemetery (disambiguation). Graveyard and Burial ground redirect here. For other uses, see Graveyard (disambiguation) and Burial Ground (disambiguation).Resting place redirects here. For the 1986 TV series, see Resting Place. For the 1951 film, see No Resting Place. Not to be confused with Rest area.This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article pos...