Equidistant

Perpendicular bisector of a line segment. The point where the red line crosses the black line segment is equidistant from the two end points of the black line segment.
The cyclic polygon P is circumscribed by the circle C. The circumcentre O is equidistant to each point on the circle, and a fortiori to each vertex of the polygon.

A point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal.[1]

In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in n-space is an (n−1)-space.

For a triangle the circumcentre is a point equidistant from each of the three vertices. Every non-degenerate triangle has such a point. This result can be generalised to cyclic polygons: the circumcentre is equidistant from each of the vertices. Likewise, the incentre of a triangle or any other tangential polygon is equidistant from the points of tangency of the polygon's sides with the circle. Every point on a perpendicular bisector of the side of a triangle or other polygon is equidistant from the two vertices at the ends of that side. Every point on the bisector of an angle of any polygon is equidistant from the two sides that emanate from that angle.

The center of a rectangle is equidistant from all four vertices, and it is equidistant from two opposite sides and also equidistant from the other two opposite sides. A point on the axis of symmetry of a kite is equidistant between two sides.

The center of a circle is equidistant from every point on the circle. Likewise the center of a sphere is equidistant from every point on the sphere.

A parabola is the set of points in a plane equidistant from a fixed point (the focus) and a fixed line (the directrix), where distance from the directrix is measured along a line perpendicular to the directrix.

In shape analysis, the topological skeleton or medial axis of a shape is a thin version of that shape that is equidistant from its boundaries.

In Euclidean geometry, parallel lines (lines that never intersect) are equidistant in the sense that the distance of any point on one line from the nearest point on the other line is the same for all points.

In hyperbolic geometry the set of points that are equidistant from and on one side of a given line form a hypercycle (which is a curve not a line).[2]

See also

References

  1. ^ Clapham, Christopher; Nicholson, James (2009). The concise Oxford dictionary of mathematics. Oxford University Press. pp. 164–165. ISBN 978-0-19-923594-0.
  2. ^ Smart, James R. (1997), Modern Geometries (5th ed.), Brooks/Cole, p. 392, ISBN 0-534-35188-3

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Rektor – berita · surat kabar · buku · cendekiawan · JSTOR Rektor (Latin: regeracode: la is deprecated , yang berarti guru) adalah istilah yang umumnya digunakan untuk pemimpin perguruan tinggi di Indone...

 

1975 studio album by Pat MartinoConsciousnessStudio album by Pat MartinoReleased1975RecordedOctober 7, 1974 Generation Sound Studio, New York CityGenreJazzLength43:31LabelMuseMR 5039ProducerMichael CuscunaPat Martino chronology Pat Martino/Live!(1974) Consciousness(1975) Starbright(1976) Consciousness is an album by guitarist Pat Martino which was recorded in 1974 and first released on the Muse label.[1][2] Reception Professional ratingsReview scoresSourceRatingAllMusi...

 

Map of New York City rapid transit 2013 edition of the official Hertz-style subway map; note that this may not reflect temporary changes in service. Many transit maps for the New York City Subway have been designed since the subway's inception in 1904. Because the subway was originally built by three separate companies, an official map for all subway lines was not created until 1940, when the three companies were consolidated under a single operator. Since then, the official map has undergone...

  هذه المقالة عن مسجد رابعة العدوية. لمعانٍ أخرى، طالع رابعة (توضيح). مسجد رابعة العدوية إحداثيات 30°04′01″N 31°19′32″E / 30.067000°N 31.325600°E / 30.067000; 31.325600 معلومات عامة القرية أو المدينة مدينة نصر، القاهرة الدولة  مصر معلومات أخرى تعديل مصدري - تعديل   مسجد رابعة �...

 

Richard Strauss Richard Strauss (11 Juni 1864 – 8 September 1949) merupakan seorang komponis Romantik dan dirigen berkebangsaan Jerman. Dilahirkan di Muenchen pada 11 Juni 1864 merupakan keponakan dari Franz Strauss, dia sebagai pemimpin pemain trompet di Lapangan Opera di Muenchen. Richard Strauss menikah dengan Pauline de Ahna pada 10 September 1894. Karya utama Nada syair Aus Italien (1886) Macbeth (1888/90) Don Juan (1889) Tod und Verklärung (Death and Transfiguration) (1891) Till Eule...

 

Respiratory medication PF-610355Clinical dataRoutes ofadministrationInhalationATC codeNoneLegal statusLegal status Development terminated Identifiers IUPAC name N-[(4'-Hydroxy-3-biphenylyl)methyl]-2-[3-(2-{[(2R)-2-hydroxy-2-{4-hydroxy-3-[(methylsulfonyl)amino]phenyl}ethyl]amino}-2-methylpropyl)phenyl]acetamide CAS Number862541-45-5PubChem CID11505444ChemSpider9680243 YUNIIZH5SMU97AJChEMBLChEMBL1240967 YChemical and physical dataFormulaC34H39N3O6SMolar mass617.76 g·mol−1 PF-6...

Federal Reserve Reform Act of 1977Long titleAn Act to extend the authority for the flexible regulation of interest rates on deposits and accounts in depository institutions, to promote the accountability of the Federal Reserve System, and for other purposes.Enacted bythe 95th United States CongressEffectiveNovember 16, 1977CitationsPublic lawPub. L.Tooltip Public Law (United States) 95–188Statutes at Large91 Stat. 1387CodificationActs amendedFederal Reserve Act Bank Hold...

 

Marathi cinema All-time 1910s 1910-1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 ...

 

Stephen Fry (non-promotional picture) Stephen Fry: Out There is a two-part 2013 television documentary in which Stephen Fry explores attitudes to homosexuality and the lives of gay people in different parts of the globe.[1] Episode 1 Stephen Fry meets Elton John and David Furnish, the couple who inspired Stephen to be open about his sexuality as well as many others. Stephen travels to Uganda, where the government was considering, and in January 2014 implemented, a new law that would ...

Untuk serial TV India, lihat Madhubala (serial TV). MadhubalaMadhubala pada 1966.LahirMumtaz Jehan Begum Dehlavi(1933-02-14)14 Februari 1933Delhi, India Britania (sekarang India)Meninggal23 Februari 1969(1969-02-23) (umur 36)Bombay, Maharashtra, India (sekarang Mumbai)Sebab meninggalDefek septum ventrikelMakamPemakaman Juhu, Santacruz, Mumbai, Maharashtra, IndiaTempat tinggalSangeet Samrat Naushad Ali Marg, Bandra, Mumbai, IndiaKebangsaanIndia Britania (1933–1947)India (1947–196...

 

Pemilihan Umum Bupati Luwu Utara 202020159 Desember 2020[1]Kandidat   Calon Indah Putri Indriani M. Thahar Rum Arsyad Kasmar Partai Partai Golongan Karya NasDem Gerindra Pendamping Suaib Mansur Rahmat Laguni Andi Sukma Peta persebaran suara Peta Sulawesi Selatan yang menyoroti Kabupaten Luwu Utara Bupati dan Wakil Bupati petahanaIndah Putri Indriani danM. Thahar Rum Partai Gerakan Indonesia Raya Bupati dan Wakil Bupati terpilih Indah Putri Indriani dan Suaib Mansur Partai Golong...

 

2014 American filmThe Town That Dreaded SundownTheatrical release posterDirected byAlfonso Gomez-RejonWritten byRoberto Aguirre-SacasaBased onThe Town That Dreaded Sundownby Charles B. PierceProduced by Jason Blum Ryan Murphy Starring Addison Timlin Travis Tope Spencer Treat Clark Ed Lauter Veronica Cartwright Gary Cole Anthony Anderson Joshua Leonard Edward Herrmann CinematographyMichael GoiEdited byJoe LeonardMusic byLudwig GöranssonProductioncompanies Blumhouse Productions Ryan Murphy Pr...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2021) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوال...

 

Sumak Buah sumac pada musim gugur Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosid Ordo: Sapindales Famili: Anacardiaceae Subfamili: Anacardioideae Genus: Rhus (syn. Searsia)L.[1] Spesies tipe Rhus coriariaL.[2] Species Sekitar 35 spesies; lihat teks Sumak (Asiria: ܣܘܼܡܵܩܵܐ Sumaq, /ˈsjuːmæk/, /ˈʃuːmæk/ atau /ˈsuːmæk/; juga disebut sumach) adalah salah satu dari sekitar 35 spesies dari tumb...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أبريل 2023) أكاديمية البحث العلمي والتكنولوجيا ASRT تفاصيل الوكالة الحكومية البلد  مصر ال...

Final game of a Canadian soccer tournament Football matchCanadian Championship FinalBC Place in Vancouver, British Columbia hosted the match.Event2023 Canadian Championship Vancouver Whitecaps FC CF Montréal 2 1 DateJune 7, 2023VenueBC Place, Vancouver, British ColumbiaPlayer of the MatchRyan GauldRefereeFilip DujicAttendance20,072WeatherMostly Cloudy26 °C (79 °F)34% humidity[1]← 2022 2024 → The 2023 Canadian Championship Final was the deciding match of the 20...

 

Voce principale: Supercoppa di Serie C. Supercoppa di Lega di Serie C 2002 Logo della competizione Competizione Supercoppa di Lega di Serie C Sport Calcio Edizione 3ª Organizzatore Lega Professionisti Serie C Date dal 12 maggio 2002al 16 maggio 2002 Luogo Ascoli Piceno, Livorno Partecipanti 2 Formula Finale A/R Impianto/i Stadio Cino e Lillo Del Duca, Stadio Armando Picchi Sito web lega-pro.com Risultati Vincitore Ascoli(1º titolo) Secondo Livorno Statistiche Miglior marcatore...

 

Irfan El SiamiLahirMuhammad Irfan El Siami28 Januari 1996 (umur 28)Sungai Kupang, Kalimantan Selatan, IndonesiaAlmamaterUniversitas Islam Kalimantan Muhammad Arsyad Al BanjariPekerjaanPelawak tunggal, guruTahun aktif2020—sekarang Muhammad Irfan El Siami, S.T. (lahir 28 Januari 1996) adalah seorang pelawak tunggal berkebangsaan Indonesia. Irfan, sapaannya adalah pelawak tunggal atau komika muda asal Banjarmasin pertama yang dikenal secara nasional setelah mengikuti kompetisi Stand...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Honduras at the Pan American Games – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) Sporting event delegationHonduras at thePan American GamesIOC codeHONNOCComité Olímpico HondureñoWebsitecohonduras.comMedalsRanked 35th ...

 

Oxyopes jacksoni Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Oxyopidae Genus: Oxyopes Spesies: Oxyopes jacksoni Nama binomial Oxyopes jacksoniLessert, 1915 Oxyopes jacksoni adalah spesies laba-laba yang tergolong famili Oxyopidae. Spesies ini juga merupakan bagian dari genus Oxyopes dan ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1915 oleh Lessert. Laba-laba ini biasanya banyak ditemui di Afrika Timur. Refe...