105 comes in the middle of the prime quadruplet (101, 103, 107, 109). The only other such numbers less than a thousand are 9, 15, 195, and 825.
105 is also the middle of the only prime sextuplet (97, 101, 103, 107, 109, 113) between the ones occurring at 7-23 and at 16057–16073. 105 is the product of the first three odd primes () and is less than the square of the next prime (11) by > 8. Therefore, for , n ± 2, ± 4, and ± 8 must be prime (a prime k-tuple). In contrast, n ± 6, ± 10, ± 12, and ± 14 must be composite, making a prime gap on either side.
105 is also a pseudoprime to the prime bases 13, 29, 41, 43, 71, 83, and 97. The distinct prime factors of 105 add up to 15, and so do those of 104; hence, the two numbers form a Ruth-Aaron pair under the first definition.
105 is also a number n for which is prime, for . (This even works up to , ignoring the negative sign.)
105 is the smallest integer such that the factorization of over Q includes non-zero coefficients other than . In other words, the 105th cyclotomic polynomial, Φ105, is the first with coefficients other than .
105 is the number of parallelogram polyominoes with 7 cells.[5]