Prime k-tuple

In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, …), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, …) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers.[1]

Named patterns

Several of the shortest k-tuples are known by other common names:

(0, 2) twin primes
(0, 4) cousin primes
(0, 6) sexy primes
(0, 2, 6), (0, 4, 6) prime triplets
(0, 6, 12) sexy prime triplets
(0, 2, 6, 8) prime quadruplets, prime decade
(0, 6, 12, 18) sexy prime quadruplets
(0, 2, 6, 8, 12), (0, 4, 6, 10, 12) prime quintuplets
(0, 4, 6, 10, 12, 16) prime sextuplets

OEIS sequence OEISA257124 covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.g. the three sequences corresponding to the three admissible 8-tuples (prime octuplets), and the union of all 8-tuples. The first term in these sequences corresponds to the first prime in the smallest prime constellation shown below.

Admissibility

In order for a k-tuple to have infinitely many positions at which all of its values are prime, there cannot exist a prime p such that the tuple includes every different possible value modulo p. If such a prime p existed, then no matter which value of n was chosen, one of the values formed by adding n to the tuple would be divisible by p, so the only possible placements would have to include p itself, and there are at most k of those. For example, the numbers in a k-tuple cannot take on all three values 0, 1, and 2 modulo 3; otherwise the resulting numbers would always include a multiple of 3 and therefore could not all be prime unless one of the numbers is 3 itself.

A k-tuple that includes every possible residue modulo p is said to be inadmissible modulo p. It should be obvious that this is only possible when kp. A tuple which is not inadmissible modulo any prime is called admissible.

It is conjectured that every admissible k-tuple matches infinitely many positions in the sequence of prime numbers. However, there is no tuple for which this has been proven except the trivial 1-tuple (0). In that case, the conjecture is equivalent to the statement that there are infinitely many primes. Nevertheless, Yitang Zhang proved in 2013 that there exists at least one 2-tuple which matches infinitely many positions; subsequent work showed that such a 2-tuple exists with values differing by 246 or less that matches infinitely many positions.[2]

Positions matched by inadmissible patterns

Although (0, 2, 4) is inadmissible modulo 3, it does produce the single set of primes, (3, 5, 7).

Because 3 is the first odd prime, a non-trivial (k ≥ 1) k-tuple matching the prime 3 can only match in one position. If the tuple begins (0, 1, ...) (i.e. is inadmissible modulo 2) then it can only match (2, 3, ...); if the tuple contains only even numbers, it can only match (3, ...).

Inadmissible k-tuples can have more than one all-prime solution if they are admissible modulo 2 and 3, and inadmissible modulo a larger prime p ≥ 5. This of course implies that there must be at least five numbers in the tuple. The shortest inadmissible tuple with more than one solution is the 5-tuple (0, 2, 8, 14, 26), which has two solutions: (3, 5, 11, 17, 29) and (5, 7, 13, 19, 31), where all values mod 5 are included in both cases. Examples with three or more solutions also exist.[3]

Prime constellations

The diameter of a k-tuple is the difference of its largest and smallest elements. An admissible prime k-tuple with the smallest possible diameter d (among all admissible k-tuples) is a prime constellation. For all nk this will always produce consecutive primes.[4] (Recall that all n are integers for which the values (n + a, n + b, …) are prime.)

This means that, for large n:

where pn is the nth prime number.

The first few prime constellations are:

k d Constellation smallest[5]
2 2 (0, 2) (3, 5)
3 6 (0, 2, 6)
(0, 4, 6)
(5, 7, 11)
(7, 11, 13)
4 8 (0, 2, 6, 8) (5, 7, 11, 13)
5 12 (0, 2, 6, 8, 12)
(0, 4, 6, 10, 12)
(5, 7, 11, 13, 17)
(7, 11, 13, 17, 19)
6 16 (0, 4, 6, 10, 12, 16) (7, 11, 13, 17, 19, 23)
7 20 (0, 2, 6, 8, 12, 18, 20)
(0, 2, 8, 12, 14, 18, 20)
(11, 13, 17, 19, 23, 29, 31)
(5639, 5641, 5647, 5651, 5653, 5657, 5659)
8 26 (0, 2, 6, 8, 12, 18, 20, 26)
(0, 2, 6, 12, 14, 20, 24, 26)
(0, 6, 8, 14, 18, 20, 24, 26)
(11, 13, 17, 19, 23, 29, 31, 37)
(17, 19, 23, 29, 31, 37, 41, 43)
(88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)
9 30 (0, 2, 6, 8, 12, 18, 20, 26, 30)
(0, 4, 6, 10, 16, 18, 24, 28, 30)
(0, 2, 6, 12, 14, 20, 24, 26, 30)
(0, 4, 10, 12, 18, 22, 24, 28, 30)
(11, 13, 17, 19, 23, 29, 31, 37, 41)
(13, 17, 19, 23, 29, 31, 37, 41, 43)
(17, 19, 23, 29, 31, 37, 41, 43, 47)
(88789, 88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)

The diameter d as a function of k is sequence A008407 in the OEIS.

A prime constellation is sometimes referred to as a prime k-tuplet, but some authors reserve that term for instances that are not part of longer k-tuplets.

The first Hardy–Littlewood conjecture predicts that the asymptotic frequency of any prime constellation can be calculated. While the conjecture is unproven it is considered likely to be true. If that is the case, it implies that the second Hardy–Littlewood conjecture, in contrast, is false.

Prime arithmetic progressions

A prime k-tuple of the form (0, n, 2n, 3n, …, (k − 1)n) is said to be a prime arithmetic progression. In order for such a k-tuple to meet the admissibility test, n must be a multiple of the primorial of k.[6]

Skewes numbers

The Skewes numbers for prime k-tuples are an extension of the definition of Skewes' number to prime k-tuples based on the first Hardy–Littlewood conjecture (Tóth (2019)). Let denote a prime k-tuple, the number of primes p below x such that are all prime, let and let denote its Hardy–Littlewood constant (see first Hardy–Littlewood conjecture). Then the first prime p that violates the Hardy–Littlewood inequality for the k-tuple P, i.e., such that

(if such a prime exists) is the Skewes number for P.

The table below shows the currently known Skewes numbers for prime k-tuples:

Prime k-tuple Skewes number Found by
1369391 Wolf (2011)
5206837 Tóth (2019)
87613571 Tóth (2019)
337867 Tóth (2019)
1172531 Tóth (2019)
827929093 Tóth (2019)
21432401 Tóth (2019)
216646267 Tóth (2019)
251331775687 Tóth (2019)
7572964186421 Pfoertner (2020)
214159878489239 Pfoertner (2020)
1203255673037261 Pfoertner / Luhn (2021)
523250002674163757 Luhn / Pfoertner (2021)
750247439134737983 Pfoertner / Luhn (2021)

The Skewes number (if it exists) for sexy primes is still unknown.

References

  1. ^ Chris Caldwell, "The Prime Glossary: k-tuple" at The Prime Pages.
  2. ^ "Bounded gaps between primes". PolyMath. Retrieved 2019-04-22.[dead link]
  3. ^ Fernando, Ravi (7 March 2015). "How many distinct translates of a (non-admissible) set H can consist entirely of primes?". Mathematics StackExchange.
  4. ^ Weisstein, Eric W. "Prime Constellation". MathWorld.
  5. ^ Norman Luhn, "The big database of 'Smallest Prime k-tuplets' ".
  6. ^ Weisstein, Eric W. "Prime Arithmetic Progression". MathWorld.

Read other articles:

العلاقات الإندونيسية الفانواتية إندونيسيا فانواتو   إندونيسيا   فانواتو تعديل مصدري - تعديل   العلاقات الإندونيسية الفانواتية هي العلاقات الثنائية التي تجمع بين إندونيسيا وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية لل�...

 

العلاقات السنغالية الإثيوبية السنغال إثيوبيا   السنغال   إثيوبيا تعديل مصدري - تعديل   العلاقات السنغالية الإثيوبية هي العلاقات الثنائية التي تجمع بين السنغال وإثيوبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

12th/13th century crusades around the Baltic Sea For the film, see Northern Crusades (film). Battle on the Ice on Lake Peipus during the Northern Crusades, miniature from the Illustrated Chronicle of Ivan the Terrible (16th century) vteCrusadesIdeology and institutions Crusading movement In the Holy Land (1095–1291) First 1101 Norwegian Venetian 1129 Second Third 1197 Fourth Fifth Sixth Barons' Seventh 1267 Catalan Eighth Lord Edward's Fall of Outremer Later Crusades (1291–1717) C...

Frontispiece 1: compiler of the manuscript, holding a volume in his hands. Ibn Bakhtīshūʿ, Kitāb naʿt al-ḥayawān, probably Baghdad, c. 1225. London, British Library, Or. 2784, fol. 1v (2v) Kitāb naʿt al-ḥayawān, sometimes abbreviated Na't (“Book of the Characteristics of Animals”), is a 13th-century manuscript in the tradition of the Nestorian Christian author Ibn Bakhtīshūʿ (980–1058). The manuscript is in the British Library (Or. 2784).[1] It is the earliest il...

 

Geosciurus Tupai tanah Afrika Selatan (Geosciurus inauris)TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoRodentiaFamiliSciuridaeGenusXerusUpagenusGeosciurus Smith, 1834 Spesies2 lihat tekslbs Geosciurus adalah sebuah genus apda tribus tupai tanah Afrika (Xerini) yang dapat ditemukan di bagian-bagian yang lebih kering di Afrika bagian selatan, mulai dari Afrika Selatan ke Botswana, sampai ke Namibia. Spesies Image Scientific name Common Name Distribution Geosciurus inauris (Zimmermann...

 

Casacanditellacomune Casacanditella – Veduta LocalizzazioneStato Italia Regione Abruzzo Provincia Chieti AmministrazioneSindacoAlessandro Monaco (lista civica Casacanditella svolta) dal 04-10-2021 TerritorioCoordinate42°14′51.02″N 14°11′59.75″E / 42.247506°N 14.199931°E42.247506; 14.199931 (Casacanditella)Coordinate: 42°14′51.02″N 14°11′59.75″E / 42.247506°N 14.199931°E42.247506; 14.199931 (Casacanditella...

James ChallisLahir(1803-12-12)12 Desember 1803Braintree, EssexMeninggal3 Desember 1882(1882-12-03) (umur 78)CambridgeKebangsaanInggrisDikenal atasNeptunusKarier ilmiahBidangastronomiInstitusiObservatorium Cambridge James Challis FRS (12 Desember 1803 – 3 December 1882) adalah seorang biarawan, fisikawan dan astronom Inggris. Profesor Plumian dan direktur Observatorium Cambridge, ia menginvestigsi sebuah garis besar dari fenomena fisika yang membuat beberapa kontribusi di luar ast...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Maine vehicle license plates MaineCurrent seriesSloganVacationlandSize12 in × 6 in30 cm × 15 cmMaterialAluminumSerial format123·ABCIntroducedJuly 1, 1999 (1999-07-01)AvailabilityIssued byDepartment of the Secretary of State, Bureau of Motor VehiclesHistoryFirst issuedJune 1, 1905 (1905-06-01)vte The U.S. state of Maine first required its residents to register their motor vehicles and display license plates in 1905. As of 2022[...

Questa voce sugli argomenti stati scomparsi e Colonie è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento Delaware è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Colonia del Delaware Dati amministrativiNome completoDelaware Colony Lingue ufficialiInglese Lingue parlateInglese CapitaleNew Castle Dipendente da Regno d'Inghilterra (1664-1707...

 

كأس البرازيل 2010 تفاصيل الموسم كأس البرازيل  النسخة 22  البلد البرازيل  التاريخ نهاية:4 أغسطس 2010  المنظم الاتحاد البرازيلي لكرة القدم  البطل نادي سانتوس  مباريات ملعوبة 116   عدد المشاركين 64   أهداف مسجلة 340   كأس البرازيل 2009  كأس البرازيل 2011  تعديل مص...

 

Administrative divisionsof China Province-level (1st)Municipalities Provinces Autonomous regions Special administrative regions Sub-provincial levelSub-provincial cities Sub-provincial autonomous prefectures Sub-provincial city districts Prefecture-level (2nd)Prefectural cities Autonomous prefectures Leagues (Aimag) (abolishing) Prefectures (abolishing) Sub-prefectural-levelSub-prefectural cities Provincial-controlled cities Provincial-controlled counties Provincial-controlled districts Coun...

County in Missouri, United States County in MissouriPulaski CountyCountyOld and new Pulaski County courthouses in WaynesvilleLocation within the U.S. state of MissouriMissouri's location within the U.S.Coordinates: 37°49′N 92°13′W / 37.82°N 92.21°W / 37.82; -92.21Country United StatesState MissouriFoundedJanuary 19, 1833Named forKazimierz PułaskiSeatWaynesvilleLargest communityFort Leonard WoodArea • Total551 sq mi (1,430 k...

 

American politician Charles Miller Floyd51st Governor of New HampshireIn officeJanuary 3, 1907 – January 7, 1909Preceded byJohn McLaneSucceeded byHenry B. QuinbyMember of the New Hampshire SenateIn office1899–1901 Personal detailsBornJune 5, 1861Derry, New HampshireDiedFebruary 3, 1923 (aged 61)Manchester, New HampshirePolitical partyRepublican Charles Miller Floyd (June 5, 1861 – February 3, 1923) was an American merchant, and manufacturer, and Republican politician from M...

 

1995 2011 Élections sénatoriales de 2004 en Seine-et-Marne 26 septembre 2004 Type d’élection Élections sénatoriales Postes à élire 6 sièges de sénateur Union et action pour la Seine-et-Marne – Jean-Jacques Hyest Liste Union pour un mouvement populaire0 Voix 1 265 44,56 %  Sénateurs élus 3  1 Mieux vivre en Seine-et-Marne – Yannick Bodin Liste Parti socialisteParti communiste françaisLes Verts Voix 1 066 37,55 %  Sé...

Флаг Казахской Советской Социалистической Республики Субъект Казахская Советская Социалистическая Республика Страна СССР Утверждён 24 января 1953 Отменён 4 июня 1992 Пропорция 1:2  Медиафайлы на Викискладе Флаг Казахской ССР — государственный символ Казахской ССР. Ко�...

 

この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 脚注を導入して、記事の信頼性向上にご協力ください。(2020年4月) この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 一次資料や記事主題の関係者による情報源に頼って書かれています。(2020年4月) 音楽の特...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) مسجد ا...

Thought or idea that can be shared, in analogy to a gene For the usage of the term on the Internet, see Internet meme. For other uses, see Meme (disambiguation). Part of a series onAnthropology OutlineHistory Types Archaeological Biological Cultural Linguistic Social Archaeological Aerial Aviation Battlefield Biblical Bioarchaeological Environmental Ethnoarchaeological Experiential Feminist Forensic Maritime Paleoethnobotanical Zooarchaeological Biological Anthrozoological Biocultural Evoluti...

 

1976 British-German science-fiction TV series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Star Maidens – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message) Star MaidensChristiane Krüger (centre) and Lisa Harrow (right) in Star MaidensAlso known asLes...