This shows 31697 is a Fermat PRP (base 3), so we may suspect it is a prime. We now repeatedly halve the exponent:
The first couple of times do not yield anything interesting (the result was still 1 modulo 31697), but at exponent 3962 we see a result that is neither 1 nor minus 1 (i.e. 31696) modulo 31697. This proves 31697 is in fact composite (it equals 29×1093). Modulo a prime, the residue 1 can have no other square roots than 1 and minus 1. This shows that 31697 is not a strong pseudoprime to base 3.
For another example, pick n = 47197 and calculate in the same manner:
In this case, the result continues to be 1 (mod 47197) until we reach an odd exponent. In this situation, we say that 47197 is a strong probable prime to base 3. Because it turns out this PRP is in fact composite (can be seen by picking other bases than 3), we have that 47197 is a strong pseudoprime to base 3.
Finally, consider n = 74593 where we get:
Here, we reach minus 1 modulo 74593, a situation that is perfectly possible with a prime. When this occurs, we stop the calculation (even though the exponent is not odd yet) and say that 74593 is a strong probable prime (and, as it turns out, a strong pseudoprime) to base 3.
Formal definition
An odd composite number n = d · 2s + 1 where d is odd is called a strong (Fermat) pseudoprime to base a if:
or
(If a number n satisfies one of the above conditions and we don't yet know whether it is prime, it is more precise to refer to it as a strong probable prime to base a. But if we know that n is not prime, then we may use the term strong pseudoprime.)
The definition is trivially met if a ≡ ±1 (mod n) so these trivial bases are often excluded.
Guy mistakenly gives a definition with only the first condition, which is not satisfied by all primes.[1]
Properties of strong pseudoprimes
A strong pseudoprime to base a is always an Euler–Jacobi pseudoprime, an Euler pseudoprime[2] and a Fermat pseudoprime to that base, but not all Euler and Fermat pseudoprimes are strong pseudoprimes. Carmichael numbers may be strong pseudoprimes to some bases—for example, 561 is a strong pseudoprime to base 50—but not to all bases.
A composite number n is a strong pseudoprime to at most one quarter of all bases below n;[3][4] thus, there are no "strong Carmichael numbers", numbers that are strong pseudoprimes to all bases. Thus given a random base, the probability that a number is a strong pseudoprime to that base is less than 1/4, forming the basis of the widely used Miller–Rabin primality test. The true probability of a failure is generally vastly smaller. Paul Erdős and Carl Pomerance showed in 1986 that if a random integer n passes the Miller–Rabin primality test to a random base b, then n is almost surely a prime.[5] For example, of the first 25,000,000,000 positive integers, there are 1,091,987,405 integers that are probable primes to base 2, but only 21,853 of them are pseudoprimes, and even fewer of them are strong pseudoprimes, as the latter is a subset of the former.[6]
However, Arnault
[7]
gives a 397-digit Carmichael number that is a strong pseudoprime to every base less than 307.
One way to reduce the chance that such a number is wrongfully declared probably prime is to combine a strong probable prime test with a Lucas probable prime test, as in the Baillie–PSW primality test.
There are infinitely many strong pseudoprimes to any base.[2]
For base 4, see OEIS: A020230, and for base 6 to 100, see OEIS: A020232 to OEIS: A020326.
By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone.
For example, there are only 13 numbers less than 25·109 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.
They are listed in Table 7 of.[2] The smallest such number is 25326001.
This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime.
Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.[8][9]
So, if n is less than 3825123056546413051 and n is a strong probable prime to these 9 bases, then n is prime.
By judicious choice of bases that are not necessarily prime, even better tests can be constructed. For example, there is no composite that is a strong pseudoprime to all of the seven bases 2, 325, 9375, 28178, 450775, 9780504, and 1795265022.[10]
Smallest strong pseudoprime to base a
a
Least SPSP
a
Least SPSP
a
Least SPSP
a
Least SPSP
1
9
33
545
65
33
97
49
2
2047
34
33
66
65
98
9
3
121
35
9
67
33
99
25
4
341
36
35
68
25
100
9
5
781
37
9
69
35
101
25
6
217
38
39
70
69
102
133
7
25
39
133
71
9
103
51
8
9
40
39
72
85
104
15
9
91
41
21
73
9
105
451
10
9
42
451
74
15
106
15
11
133
43
21
75
91
107
9
12
91
44
9
76
15
108
91
13
85
45
481
77
39
109
9
14
15
46
9
78
77
110
111
15
1687
47
65
79
39
111
55
16
15
48
49
80
9
112
65
17
9
49
25
81
91
113
57
18
25
50
49
82
9
114
115
19
9
51
25
83
21
115
57
20
21
52
51
84
85
116
9
21
221
53
9
85
21
117
49
22
21
54
55
86
85
118
9
23
169
55
9
87
247
119
15
24
25
56
55
88
87
120
91
25
217
57
25
89
9
121
15
26
9
58
57
90
91
122
65
27
121
59
15
91
9
123
85
28
9
60
481
92
91
124
25
29
15
61
15
93
25
125
9
30
49
62
9
94
93
126
25
31
15
63
529
95
1891
127
9
32
25
64
9
96
95
128
49
References
^Guy, Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes. §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.