Tetrahedral number

A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers.

A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The nth tetrahedral number, Ten, is the sum of the first n triangular numbers, that is,

The tetrahedral numbers are:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... (sequence A000292 in the OEIS)

Formula

Derivation of Tetrahedral number from a left-justified Pascal's triangle.
  Tetrahedral numbers
  5-simplex numbers
  6-simplex numbers
  7-simplex numbers

The formula for the nth tetrahedral number is represented by the 3rd rising factorial of n divided by the factorial of 3:

The tetrahedral numbers can also be represented as binomial coefficients:

Tetrahedral numbers can therefore be found in the fourth position either from left or right in Pascal's triangle.

Proofs of formula

This proof uses the fact that the nth triangular number is given by

It proceeds by induction.

Base case
Inductive step

The formula can also be proved by Gosper's algorithm.

Recursive relation

Tetrahedral and triangular numbers are related through the recursive formulas

The equation becomes

Substituting for in equation

Thus, the th tetrahedral number satisfies the following recursive equation

Generalization

The pattern found for triangular numbers and for tetrahedral numbers can be generalized. This leads to the formula:[1]

Geometric interpretation

Tetrahedral numbers can be modelled by stacking spheres. For example, the fifth tetrahedral number (Te5 = 35) can be modelled with 35 billiard balls and the standard triangular billiards ball frame that holds 15 balls in place. Then 10 more balls are stacked on top of those, then another 6, then another three and one ball at the top completes the tetrahedron.

When order-n tetrahedra built from Ten spheres are used as a unit, it can be shown that a space tiling with such units can achieve a densest sphere packing as long as n ≤ 4.[2][dubiousdiscuss]

Tetrahedral roots and tests for tetrahedral numbers

By analogy with the cube root of x, one can define the (real) tetrahedral root of x as the number n such that Ten = x:

which follows from Cardano's formula. Equivalently, if the real tetrahedral root n of x is an integer, x is the nth tetrahedral number.

Properties

  • Ten + Ten−1 = 12 + 22 + 32 ... + n2, the square pyramidal numbers.
    Te2n+1 = 12 + 32 ... + (2n+1)2, sum of odd squares.
    Te2n = 22 + 42 ... + (2n)2, sum of even squares.
  • A. J. Meyl proved in 1878 that only three tetrahedral numbers are also perfect squares, namely:
    Te1 = 12 = 1
    Te2 = 22 = 4
    Te48 = 1402 = 19600.
  • Sir Frederick Pollock conjectured that every positive integer is the sum of at most 5 tetrahedral numbers: see Pollock tetrahedral numbers conjecture.
  • The only tetrahedral number that is also a square pyramidal number is 1 (Beukers, 1988), and the only tetrahedral number that is also a perfect cube is 1.
  • The infinite sum of tetrahedral numbers' reciprocals is 3/2, which can be derived using telescoping series:
  • The parity of tetrahedral numbers follows the repeating pattern odd-even-even-even.
  • An observation of tetrahedral numbers:
    Te5 = Te4 + Te3 + Te2 + Te1
  • Numbers that are both triangular and tetrahedral must satisfy the binomial coefficient equation:
The third tetrahedral number equals the fourth triangular number as the nth k-simplex number equals the kth n-simplex number due to the symmetry of Pascal's triangle, and its diagonals being simplex numbers; similarly, the fifth tetrahedral number (35) equals the fourth pentatope number, and so forth
The only numbers that are both tetrahedral and triangular numbers are (sequence A027568 in the OEIS):
Te1 = T1 = 1
Te3 = T4 = 10
Te8 = T15 = 120
Te20 = T55 = 1540
Te34 = T119 = 7140
  • Ten is the sum of all products p × q where (p, q) are ordered pairs and p + q = n + 1
  • Ten is the number of (n + 2)-bit numbers that contain two runs of 1's in their binary expansion.
  • The largest tetrahedral number of the form for some integers and is 8436.
Number of gifts of each type and number received each day and their relationship to figurate numbers

Te12 = 364 is the total number of gifts "my true love sent to me" during the course of all 12 verses of the carol, "The Twelve Days of Christmas".[3] The cumulative total number of gifts after each verse is also Ten for verse n.

The number of possible KeyForge three-house combinations is also a tetrahedral number, Ten−2 where n is the number of houses.

See also

References

  1. ^ Baumann, Michael Heinrich (2018-12-12). "Die k-dimensionale Champagnerpyramide" (PDF). Mathematische Semesterberichte (in German). 66: 89–100. doi:10.1007/s00591-018-00236-x. ISSN 1432-1815. S2CID 125426184.
  2. ^ "Tetrahedra". 21 May 2000. Archived from the original on 2000-05-21.
  3. ^ Brent (2006-12-21). "The Twelve Days of Christmas and Tetrahedral Numbers". Mathlesstraveled.com. Retrieved 2017-02-28.

Read other articles:

Gennep adalah sebuah gemeente Belanda yang terletak di provinsi Limburg. Pada tahun 2021 daerah ini memiliki penduduk sebesar 17.000 jiwa. Lihat pula Daftar Kota Belanda lbsMunisipalitas di provinsi Limburg Beek Beekdaelen Beesel Bergen Brunssum Echt-Susteren Eijsden-Margraten Gennep Gulpen-Wittem Heerlen Horst aan de Maas Kerkrade Landgraaf Leudal Maasgouw Maastricht Meerssen Mook en Middelaar Nederweert Peel en Maas Roerdalen Roermond Simpelveld Sittard-Geleen Stein Vaals Valkenburg aan de...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

Pour les articles homonymes, voir Rossi. Cet article est une ébauche concernant un homme politique français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. André Rossi Buste d'André Rossi à Chézy-sur-Marne. Fonctions Député français 23 juin 1988 – 22 août 1994(6 ans, 1 mois et 30 jours) Élection 12 juin 1988 Réélection 28 mars 1993 Circonscription 5e de l'Aisne Législature IXe et ...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Unknown medieval poet The Gawain Poet (fl. c. 1375–1400), manuscript painting (as the father in Pearl) The Gawain Poet (/ˈɡɑːweɪn ˈɡæ-, -wɪn, ɡəˈweɪn/[1][2]), or less commonly the Pearl Poet[3] (fl. late 14th century), is the name given to the author of Sir Gawain and the Green Knight, an alliterative poem written in 14th-century Middle English. Its author appears also to have written the poems Pearl, Patience, and Cleanness; some scholars suggest ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ben Halls Gap National Park – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this message) Protected area in New South Wales, AustraliaBen Halls Gap National ParkNew South WalesIUCN category Ia (strict nature reserve)&#...

Variety of maize For the Native American artist and potter called Blue Corn, see Crucita Calabaza. Hopi blue corn New Mexican blue corn for posole (L) and roasted and ground (R) Ears of corn, including the dark blue corn variety Blue corn (also known as Hopi maize, Yoeme Blue, Tarahumara Maiz Azul, and Rio Grande Blue) is a group of several closely related varieties of flint corn grown in Mexico, the Southwestern United States, and the Southeastern United States.[1][2][3&#...

 

У этого термина существуют и другие значения, см. Родригес. Внешние острова МаврикияОстров Родригесангл. Rodrigues Islandфр. Île Rodriguesкреол. Zil Rodrigues Флаг Гимн Маврикия 19°43′ ю. ш. 63°25′ в. д.HGЯO Страна Маврикий Адм. центр Порт-Матурин Президент Анируд Джагнот Глава ад�...

 

Sant'Angelo dei LombardiKomuneComune di Sant'Angelo dei LombardiLokasi Sant'Angelo dei Lombardi di Provinsi AvellinoNegaraItaliaWilayah CampaniaProvinsiAvellino (AV)Luas[1] • Total55,11 km2 (21,28 sq mi)Ketinggian[2]875 m (2,871 ft)Populasi (2016)[3] • Total4.304 • Kepadatan78/km2 (200/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos83054Kode area telepon0827Situs webh...

Railway station in Kamakura, Kanagawa Prefecture, Japan JO08 JS08 Kita-Kamakura Station北鎌倉駅Kita-Kamakura Station, January 2018General informationLocationYamanouchi, Kamakura, Kanagawa(神奈川県鎌倉市山ノ内)JapanOperated byJR EastLine(s)JO Yokosuka Line JS Shōnan-Shinjuku LineHistoryOpened1927PassengersFY20088,596 daily Services Preceding station JR East Following station KamakuraJO07towards Kurihama Yokosuka Line ŌfunaOFNJO09towards Tokyo KamakuraJS07towards Zushi Shōn...

 

Model of the neural processing of vision and hearing The two-streams hypothesis is a model of the neural processing of vision as well as hearing.[1] The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems.[2] Recently there seems to be evidence of two distinct auditory systems as well. As visual information exits the occipital lobe, and as sound leaves the phonological n...

 

Ne doit pas être confondu avec Ézéchias. Pour les articles homonymes, voir Ézéchiel (homonymie). ÉzéchielLe prophète Ézéchiel, par Michel-Ange (1510)dans la chapelle Sixtine.FonctionProphèteJudaïsmeChristianismeIslamBiographieNaissance 622 av. J.-C.JérusalemDécès 571 av. J.-C.BabyloneNationalité Israélite de la tribu de LéviActivité Troisième des quatre grands prophètesPériode d'activité VIe siècle av. J.-C.Autres informationsÉtape de canonisation SaintFête 10 avril...

Total number of live births per 1,000 divided by time period Natality redirects here. For the concept in Hannah Arendt's philosophy, see Hannah Arendt § The Human Condition (1958). Countries by birth rate Birth rate, also known as natality, is the total number of live human births per 1,000 population for a given period divided by the length of the period in years.[1] The number of live births is normally taken from a universal registration system for births; population counts f...

 

Statue in Chicago, Illinois, U.S. Equestrian statue of Philip SheridanThe statue in 2023Coordinates41°56′25.7″N 87°38′21.3″W / 41.940472°N 87.639250°W / 41.940472; -87.639250 An equestrian statue of Philip Sheridan by Gutzon Borglum, sometimes called the General Philip Henry Sheridan Monument, is installed in Chicago, in the U.S. state of Illinois.[1][2] History The sculpture was installed in 1923.[3][4] It was vandalized in ...

 

Faint constellation on the celestial equator This article is about a faint constellation. For other uses, see Monoceros (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Monoceros – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this message) MonocerosCon...

  لمعانٍ أخرى، طالع رومانسية (توضيح). هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (يوليو 2016) رومانسيةمتجول فوق بحر من الضباب (1818)، كاسبر ديفيد فريدريكمعلومات عامةالفترة الزمنية نهاية القرن الثامن عشر والقرن التاسع عشرال�...

 

For the language, see Amarasi language. Amarasi was a traditional princedom in West Timor, in present-day Indonesia. It had an important role in the political history of Timor during the 17th and 18th century, being a client state of the Portuguese colonialists, and later subjected to the Netherlands East Indies. History Amarasi priests, father & son. The origins of Amarasi are recounted in various legends. The oldest available version says that the dynastic line originated from Wehali, t...

 

Questa voce sull'argomento hockeisti su ghiaccio italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Ivo GhezzeNazionalità Italia Hockey su ghiaccio SquadraSportivi Ghiaccio Cortina CarrieraNazionale Italia Palmarès Competizione Ori Argenti Bronzi Campionato italiano di hockey su ghiaccio 6 - - Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Ivo Ghezze (Cortina d'Ampezzo, 3 marzo 1941 – Cortina d'Ampezzo, 27 dicemb...

Cet article est une ébauche concernant le catch. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article concernant le catch doit être recyclé (novembre 2021). Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en ...

 

خريطة البعثات الدبلوماسية في لوكسمبورغ يسرد هذا المقال البعثات الدبلوماسية المقيمة في لوكسمبورغ. في الوقت الحاضر، تستضيف عاصمة لوكسمبورغ (مدينة) 22 سفارة. العديد من الدول الأخرى لديها قناصل فخريون لتقديم خدمات الطوارئ لمواطنيها. لدى العديد من البلدان الأخرى سفارات غير مقي...