There are a finite number of sum-product numbers in any given base . In base 10, there are exactly four sum-product numbers (sequence A038369 in the OEIS): 0, 1, 135, and 144.[1]
Definition
Let be a natural number. We define the sum-product function for base , , to be the following:
where is the number of digits in the number in base , and
is the value of each digit of the number. A natural number is a sum-product number if it is a fixed point for , which occurs if . The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers.
For example, the number 144 in base 10 is a sum-product number, because , , and .
A natural number is a sociable sum-product number if it is a periodic point for , where for a positive integer, and forms a cycle of period . A sum-product number is a sociable sum-product number with , and an amicable sum-product number is a sociable sum-product number with
All natural numbers are preperiodic points for , regardless of the base. This is because for any given digit count , the minimum possible value of is and the maximum possible value of is The maximum possible digit sum is therefore and the maximum possible digit product is Thus, the sum-product function value is This suggests that or dividing both sides by , Since this means that there will be a maximum value where because of the exponential nature of and the linearity of Beyond this value , always. Thus, there are a finite number of sum-product numbers, and any natural number is guaranteed to reach a periodic point or a fixed point less than making it a preperiodic point.
The number of iterations needed for to reach a fixed point is the sum-product function's persistence of , and undefined if it never reaches a fixed point.
Any integer shown to be a sum-product number in a given base must, by definition, also be a Harshad number in that base.
Sum-product numbers and cycles of Fb for specific b