Descartes number

In number theory, a Descartes number is an odd number which would have been an odd perfect number if one of its composite factors were prime. They are named after René Descartes who observed that the number D = 32⋅72⋅112⋅132⋅22021 = (3⋅1001)2 ⋅ (22⋅1001 − 1) = 198585576189 would be an odd perfect number if only 22021 were a prime number, since the sum-of-divisors function for D would satisfy, if 22021 were prime,

where we ignore the fact that 22021 is composite (22021 = 192 ⋅ 61).

A Descartes number is defined as an odd number n = m ⋅ p where m and p are coprime and 2n = σ(m) ⋅ (p + 1), whence p is taken as a 'spoof' prime. The example given is the only one currently known.

If m is an odd almost perfect number,[1] that is, σ(m) = 2m − 1 and 2m − 1 is taken as a 'spoof' prime, then n = m ⋅ (2m − 1) is a Descartes number, since σ(n) = σ(m ⋅ (2m − 1)) = σ(m) ⋅ 2m = (2m − 1) ⋅ 2m = 2n. If 2m − 1 were prime, n would be an odd perfect number.

Properties

Banks et al. showed in 2008 that if n is a cube-free Descartes number not divisible by , then n has over one million distinct prime divisors.[2]

Tóth showed in 2021 that if denotes a Descartes number (other than Descartes’ example), with pseudo-prime factor , then .

Generalizations

John Voight generalized Descartes numbers to allow negative bases. He found the example .[3] Subsequent work by a group at Brigham Young University found more examples similar to Voight's example,[3] and also allowed a new class of spoofs where one is allowed to also not notice that a prime is the same as another prime in the factorization.[4]

See also

Notes

  1. ^ Currently, the only known almost perfect numbers are the non-negative powers of 2, whence the only known odd almost perfect number is 20 = 1.
  2. ^ Banks, William D.; Güloğlu, Ahmet M.; Nevans, C. Wesley; Saidak, Filip (2008), "Descartes numbers", Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13–17, 2006, Providence, RI: American Mathematical Society (AMS), pp. 167–173, ISBN 978-0-8218-4406-9, Zbl 1186.11004, retrieved 2024-05-13
  3. ^ a b Nadis, Steve (September 10, 2020). "Mathematicians Open a New Front on an Ancient Number Problem". Quanta Magazine. Retrieved 3 October 2021.
  4. ^ Andersen, Nickolas; Durham, Spencer; Griffin, Michael J.; Hales, Jonathan; Jenkins, Paul; Keck, Ryan; Ko, Hankun; Molnar, Grant; Moss, Eric; Nielsen, Pace P.; Niendorf, Kyle; Tombs, Vandy; Warnick, Merrill; Wu, Dongsheng (2020). "Odd, spoof perfect factorizations". J. Number Theory (234): 31–47. arXiv:2006.10697.{{cite journal}}: CS1 maint: multiple names: authors list (link) arXiv version

References


Read other articles:

Ini adalah nama Tionghoa; marganya adalah Ni. Ni KuangNi Kuang di Universitas Shue Yan Hong Kong, November 2007Nama asalHanzi: 倪匡Lahir(1935-05-30)30 Mei 1935Ningbo, Zhejiang, Republik TiongkokMeninggal3 Juli 2022(2022-07-03) (umur 87)Hong KongPekerjaanNovelis, penulis skenario, aktorKarier menulisPeriode1956–2005GenreWuxia, fiksi ilmiah Ni Kuang Hanzi: 倪匡 Alih aksara Mandarin - Hanyu Pinyin: Ní Kuāng Yue (Kantonis) - Jyutping: Ngai4 Hong1 Ni Cong(birth name) Hanzi tr...

 

 

Right Now, Wrong ThenSutradaraHong Sang-sooProduserKim Kyoung-heeDitulis olehHong Sang-sooPemeranJung Jae-young Kim Min-heePenata musikJeong Yong-jinSinematograferPark Hong-yeolPenyuntingHahm Sung-wonPerusahaanproduksiJeonwonsa FilmsDistributorGrasshopper Film Next Entertainment WorldTanggal rilis 13 Agustus 2015 (2015-08-13) (Locarno) 24 September 2015 (2015-09-24) (South Korea) 24 Juni 2016 (2016-06-24) (United States) Durasi121 minutesNegaraSouth KoreaBahas...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Jessie MurrayLahir(1867-02-09)9 Februari 1867Hazaribagh, Kemaharajaan BritaniaMeninggal25 September 1920(1920-09-25) (umur 53)Twickenham, London, InggrisKebangsaanInggrisPendidikan London School of Medicine for Women University of Durham (MB, BS) ...

Demy de Zeeuw De Zeeuw bermain untuk Spartak Moscow pada tahun 2011Informasi pribadiNama lengkap Demy Patrick René de Zeeuw[1]Tanggal lahir 26 Mei 1983 (umur 40)[1]Tempat lahir Apeldoorn, BelandaTinggi 174 m (570 ft 10 in)[1]Posisi bermain MidfielderKarier junior1989–1995 WSV Apeldoorn1995–2001 AGOVVKarier senior*Tahun Tim Tampil (Gol)2001–2005 Go Ahead Eagles 65 (7)2005–2009 AZ 119 (15)2009–2011 Ajax 59 (8)2011–2014 Spartak Moscow 22 ...

 

 

Men's middleweight freestyle wrestlingat the Games of the VIII OlympiadVenueVélodrome d'HiverDatesJuly 11–14Competitors14 from 9 nationsMedalists Fritz Hagmann  Switzerland Pierre Ollivier  Belgium Vilho Pekkala  Finland← 19201928 → Wrestling at the1924 Summer OlympicsGreco-RomanBantammenFeathermenLightmenMiddlemenLight heavymenHeavymenFreestyleBantammenFeathermenLightmenWeltermenMiddlemenLight heavymenHeavymenvte The men's freestyle middlewei...

 

 

Political crisis The Sultan Abdul Samad Building housed the Supreme Court at the time of the 1988 Malaysian constitutional crisis. This article is part of a series aboutMahathir Mohamad Early life Electoral history Political positions Awards and honours Prime Minister of Malaysia First term (1981-2003) North-South Expressway MSC Malaysia Proton Holdings Wawasan 2020 National Development Policy 1993 constitutional amendment Bangsa Malaysia Operation Haze Reformasi Asian values Putrajaya Petron...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

Война с французами и индейцамиОсновной конфликт: Семилетняя война Карта основных боевых действий Дата 1754 — 1763 Место Северная Америка Итог Победа Британии, Парижский мирный договор (1763) Противники Королевство Франция • Новая Франция Индейские племена: Алгонкины Вабана�...

 

 

Collection of Finnish folk poetry Kanteletar compiled by Elias Lönnrot, 1840 Kanteletar is a collection of Finnish folk poetry compiled by Elias Lönnrot. It is considered to be a sister collection to the Finnish national epic Kalevala. The poems of Kanteletar are based on the trochaic tetrameter, generally referred to as Kalevala metre. The name consists of the base word kantele (a Finnish zither-like instrument) and the feminising morpheme -tar and can be roughly interpreted as maiden of t...

1995 rocket attacks on Croatian cities during the Croatian War of Independence For the 1991 air strike on Zagreb, see Bombing of the Banski Dvori. Zagreb rocket attacksThe body of Ana Mutevelić lying on the intersection of Vlaška and Draškovićeva streetsLocationZagreb, CroatiaDate2–3 May 1995TargetDowntown ZagrebZagreb AirportAttack typeArtillery rocket attackWeapons262 mm M-87 Orkan multiple rocket launcher armed with cluster bombsDeaths7Injured214[1]PerpetratorsArmy of the Rep...

 

 

Archery competition 2023 World Archery Championships Men   Recurve   Compound Women   Recurve   Compound Team   Men's recurve   Men's compound Team   Women's recurve   Women's compound Mixed team   Recurve   Compound The women's individual compound competition at the 2023 World Archery Championships took place from 1 to 5 August in Berlin, Germany. Schedule All times are Central European Summer Time (UTC+02:00).[1] Date Time Round Tues...

 

 

Italian aircraft carrier For other ships with the same name, see Italian ship Aquila. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Italian aircraft carrier Aquila – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this message) RN Aquila at La Spezia in 1951, just ...

Bertrand Delanoë Wali kota ParisMasa jabatan25 Maret 2001 – 5 April 2014PendahuluJean TiberiPenggantiAnne HidalgoSenator Prancis dari ParisMasa jabatan24 September 1995 – 27 Maret 2001Anggota Majelis Majelis Nasional Prancisdapil Paris (Konstituensi ke-26)Masa jabatan21 Juni 1981 – 1 April 1986PendahuluJoël Le TacPenggantiAlain Juppé Informasi pribadiLahir30 Mei 1950 (umur 73)Tunis, Tunisia Prancis Kebangsaan PrancisPartai politikPartai Sosialis P...

 

 

German engineer and designer and the creator of the Borgward group, based in Bremen Carl F. W. Borgward (left) and Hubert M. Meingast (second from left) around 1950 Carl Friedrich Wilhelm Borgward (10 November 1890 in Altona, Hamburg – 28 July 1963 in Bremen) was a German engineer and designer and the creator of the Borgward group, based in Bremen.[1][2][3] Biography He was of modest origin, the son of coal retailer Wilhelm Borgward, and had twelve brothers...

 

 

In 1836, Alexander L. Twilight became the first African American to be elected as a state legislator in the United States. The United States has had five African-American elected office holders prior to 1867. After Congress passed the First Military Reconstruction Act of 1867 and ratified the Fifteenth Amendment to the United States Constitution in 1870, African Americans began to be elected or appointed to national, state, county and local offices throughout the United States.[1] Fou...

George Head HeadHead in 1840.[1]Bornc.1795Died12 December 1876 (aged 81)NationalityBritishOccupationBanker George Head Head (c.1795 – 12 December 1876)[2] was a mayor, magistrate, banker and mine owner in Carlisle. The bank was started by his father, but was improved and rebuilt in his lifetime.[3] He attended an important convention in 1840 on Anti-Slavery, where a painting records his involvement.[1] Biography George Head Head was born to a successful bank...

 

 

American historian and politician (1862–1927) Albert BeveridgeBeveridge, 1922United States Senatorfrom IndianaIn officeMarch 4, 1899 – March 3, 1911Preceded byDavid TurpieSucceeded byJohn W. Kern Personal detailsBornAlbert Jeremiah Beveridge(1862-10-06)October 6, 1862Highland County, Ohio, U.S.DiedApril 27, 1927(1927-04-27) (aged 64)Indianapolis, Indiana, U.S.Political partyRepublican (before 1912, 1920–1927)Progressive (1912–1920)Spouses Katherine Langsdale ​ ...

 

 

Variety of heavy cloth For the protagonist of a classic German legend, see Faust. For the British airborne mission in 1943, see Operation Fustian. Textile samples: fustian, linen and moleskin Fustian is a variety of heavy cloth woven from cotton, chiefly prepared for menswear. History and use Corduroy: This modern diagram shows the warp (3) and the long (red-4) and short (green-5) weft threads; traditionally the knife (1) and the guide (2) are attached and the cutting motion is upwards. Known...

معالي الشريف  بوريس جونسون (بالإنجليزية: Boris Johnson)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Alexander Boris de Pfeffel Johnson)‏  الميلاد 19 يونيو 1964 (60 سنة)[1][2][3][4][5]  نيويورك[6]  الإقامة كينسينغتون الغربية  [لغات أخرى]‏إيزلينغتون  [لغات...

 

 

Herr Jesu Christ, wahr' Mensch und GottBWV 127Chorale cantata by J. S. BachS. Gerome and the trumpet of the last Judgement, oil painting by Pasquale CattiOccasionEstomihiChoraleHerr Jesu Christ, wahr Mensch und GottPerformed11 February 1725 (1725-02-11): LeipzigMovements5Vocal SATB choir solo: soprano, alto and bass Instrumentaltrumpet2 recorders2 oboes2 violinsviolacontinuo Herr Jesu Christ, wahr' Mensch und Gott (Lord Jesus Christ, true Man and God),[1] BWV 127, ...