Skewes's number

Unsolved problem in mathematics:
What is the smallest Skewes's number?

In number theory, Skewes's number is any of several large numbers used by the South African mathematician Stanley Skewes as upper bounds for the smallest natural number for which

where π is the prime-counting function and li is the logarithmic integral function. Skewes's number is much larger, but it is now known that there is a crossing between and near It is not known whether it is the smallest crossing.

Skewes's numbers

J.E. Littlewood, who was Skewes's research supervisor, had proved in Littlewood (1914) that there is such a number (and so, a first such number); and indeed found that the sign of the difference changes infinitely many times. All numerical evidence then available seemed to suggest that was always less than Littlewood's proof did not, however, exhibit a concrete such number .

Skewes (1933) proved that, assuming that the Riemann hypothesis is true, there exists a number violating below

Without assuming the Riemann hypothesis, Skewes (1955) proved that there exists a value of below

Skewes's task was to make Littlewood's existence proof effective: exhibiting some concrete upper bound for the first sign change. According to Georg Kreisel, this was not considered obvious even in principle at the time.

More recent estimates

These upper bounds have since been reduced considerably by using large-scale computer calculations of zeros of the Riemann zeta function. The first estimate for the actual value of a crossover point was given by Lehman (1966), who showed that somewhere between and there are more than consecutive integers with . Without assuming the Riemann hypothesis, H. J. J. te Riele (1987) proved an upper bound of . A better estimate was discovered by Bays & Hudson (2000), who showed there are at least consecutive integers somewhere near this value where . Bays and Hudson found a few much smaller values of where gets close to ; the possibility that there are crossover points near these values does not seem to have been definitely ruled out yet, though computer calculations suggest they are unlikely to exist. Chao & Plymen (2010) gave a small improvement and correction to the result of Bays and Hudson. Saouter & Demichel (2010) found a smaller interval for a crossing, which was slightly improved by Zegowitz (2010). The same source shows that there exists a number violating below . This can be reduced to assuming the Riemann hypothesis. Stoll & Demichel (2011) gave .

Year near x # of complex
zeros used
by
2000 1.39822×10316 1×106 Bays and Hudson
2010 1.39801×10316 1×107 Chao and Plymen
2010 1.397166×10316 2.2×107 Saouter and Demichel
2011 1.397162×10316 2.0×1011 Stoll and Demichel

Rigorously, Rosser & Schoenfeld (1962) proved that there are no crossover points below , improved by Brent (1975) to , by Kotnik (2008) to , by Platt & Trudgian (2014) to , and by Büthe (2015) to .

There is no explicit value known for certain to have the property though computer calculations suggest some explicit numbers that are quite likely to satisfy this.

Even though the natural density of the positive integers for which does not exist, Wintner (1941) showed that the logarithmic density of these positive integers does exist and is positive. Rubinstein & Sarnak (1994) showed that this proportion is about 0.00000026, which is surprisingly large given how far one has to go to find the first example.

Riemann's formula

Riemann gave an explicit formula for , whose leading terms are (ignoring some subtle convergence questions)

where the sum is over all in the set of non-trivial zeros of the Riemann zeta function.

The largest error term in the approximation (if the Riemann hypothesis is true) is negative , showing that is usually larger than . The other terms above are somewhat smaller, and moreover tend to have different, seemingly random complex arguments, so mostly cancel out. Occasionally however, several of the larger ones might happen to have roughly the same complex argument, in which case they will reinforce each other instead of cancelling and will overwhelm the term .

The reason why the Skewes number is so large is that these smaller terms are quite a lot smaller than the leading error term, mainly because the first complex zero of the zeta function has quite a large imaginary part, so a large number (several hundred) of them need to have roughly the same argument in order to overwhelm the dominant term. The chance of random complex numbers having roughly the same argument is about 1 in . This explains why is sometimes larger than and also why it is rare for this to happen. It also shows why finding places where this happens depends on large scale calculations of millions of high precision zeros of the Riemann zeta function.

The argument above is not a proof, as it assumes the zeros of the Riemann zeta function are random, which is not true. Roughly speaking, Littlewood's proof consists of Dirichlet's approximation theorem to show that sometimes many terms have about the same argument. In the event that the Riemann hypothesis is false, the argument is much simpler, essentially because the terms for zeros violating the Riemann hypothesis (with real part greater than 1/2) are eventually larger than .

The reason for the term is that, roughly speaking, actually counts powers of primes, rather than the primes themselves, with weighted by . The term is roughly analogous to a second-order correction accounting for squares of primes.

Equivalent for prime k-tuples

An equivalent definition of Skewes' number exists for prime k-tuples (Tóth (2019)). Let denote a prime (k + 1)-tuple, the number of primes below such that are all prime, let and let denote its Hardy–Littlewood constant (see First Hardy–Littlewood conjecture). Then the first prime that violates the Hardy–Littlewood inequality for the (k + 1)-tuple , i.e., the first prime such that

(if such a prime exists) is the Skewes number for

The table below shows the currently known Skewes numbers for prime k-tuples:

Prime k-tuple Skewes number Found by
(p, p + 2) 1369391 Wolf (2011)
(p, p + 4) 5206837 Tóth (2019)
(p, p + 2, p + 6) 87613571 Tóth (2019)
(p, p + 4, p + 6) 337867 Tóth (2019)
(p, p + 2, p + 6, p + 8) 1172531 Tóth (2019)
(p, p + 4, p +6 , p + 10) 827929093 Tóth (2019)
(p, p + 2, p + 6, p + 8, p + 12) 21432401 Tóth (2019)
(p, p +4 , p +6 , p + 10, p + 12) 216646267 Tóth (2019)
(p, p + 4, p + 6, p + 10, p + 12, p + 16) 251331775687 Tóth (2019)
(p, p+2, p+6, p+8, p+12, p+18, p+20) 7572964186421 Pfoertner (2020)
(p, p+2, p+8, p+12, p+14, p+18, p+20) 214159878489239 Pfoertner (2020)
(p, p+2, p+6, p+8, p+12, p+18, p+20, p+26) 1203255673037261 Pfoertner / Luhn (2021)
(p, p+2, p+6, p+12, p+14, p+20, p+24, p+26) 523250002674163757 Luhn / Pfoertner (2021)
(p, p+6, p+8, p+14, p+18, p+20, p+24, p+26) 750247439134737983 Pfoertner / Luhn (2021)

The Skewes number (if it exists) for sexy primes is still unknown.

It is also unknown whether all admissible k-tuples have a corresponding Skewes number.

See also

References

Read other articles:

Untuk kegunaan lain, lihat Dewa (disambiguasi). Arca perunggu yang menggambarkan Dewa Indra, Pemimpin Para Dewa, dari Nepal pada abad ke-16. Dalam pustaka Weda Kuno, Dewa adalah makhluk gaib yang baik.[1] Dewa ( (Dewanagari: देव; ,IAST: Deva, देव) adalah kata dari bahasa Sanskerta yang berarti terang, mulia, makhluk surgawi, makhluk ilahi, hal yang cemerlang,[1] dan dapat mengacu kepada suatu golongan makhluk gaib dalam agama Hindu.[2] Dewa merupa...

 

 

Ini adalah sebuah nama Indonesia yang tidak menggunakan nama keluarga. Nama Salim adalah sebuah patronimik. Emil SalimEmil Salim sebagai Anggota Dewan Pengarah Badan Riset dan Inovasi Nasional (2021) Ketua Dewan Pertimbangan Presiden Republik Indonesia ke-3Masa jabatan25 Januari 2010 – 20 Oktober 2014PresidenSusilo Bambang Yudhoyono PendahuluT. B. SilalahiPenggantiSri AdiningsihMenteri Negara Pengawasan Pembangunan dan Lingkungan Hidup Indonesia ke-1Masa jabatan29 Maret 197...

 

 

العلاقات الأفغانية الليبيرية أفغانستان ليبيريا   أفغانستان   ليبيريا تعديل مصدري - تعديل   العلاقات الأفغانية الليبيرية هي العلاقات الثنائية التي تجمع بين أفغانستان وليبيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sou...

 

 

Questa voce sull'argomento generi cinematografici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Via col vento è un dramma romantico. Un film drammatico è un genere di film che si basa sullo sviluppo dei personaggi, dell'interazione tra essi e che tratta temi di impatto emotivo[1]. Indice 1 Descrizione 2 Note 3 Altri progetti 4 Collegamenti esterni Descrizione La definizione del genere è co...

 

 

Political parties in Tamil Nadu, India This article is part of a series on theDravidian Politics Political Parties State Parties All India Anna Dravida Munnetra Kazhagam Desiya Murpokku Dravida Kazhagam Dravida Munnetra Kazhagam Unrecognised Parties Marumalarchi Dravida Munnetra Kazhagam Union Council of Ministers Cabinet Ministers Sathiavani Muthu Aravinda Bala Pajanor Murasoli Maran T. G. Venkatraman Sedapatti R. Muthiah M. Thambidurai T. R. Baalu A. Raja Dayanidhi Maran M. K. Alagiri Minis...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

Untuk kegunaan lain, lihat Antwerpen (disambiguasi). AntwerpenAntwerpen (Belanda)Anvers (Prancis)Municipality BenderaLambang kebesaranLocation of AntwerpenAntwerpen (Belanda)Anvers (Prancis) Negara BelgiaMasyarakatMasyarakat FlandriaDaerahDaerah FlandriaProvinsiAntwerpArrondissementAntwerpPemerintahan • Wali Kota (daftar)Patrick Janssens (SP.A) • Partai penguasaSP.A, CD&V, VLDLuas • Total204,32 km2 (7,889 sq mi)Populasi (20...

Living Is Easy with Eyes ClosedPoster rilis teatrikalSutradaraDavid TruebaProduserCristina HueteDitulis olehDavid TruebaPemeranJavier CámaraNatalia de MolinaFrancesc ColomerPenata musikPat MethenySinematograferDaniel VilarPenyuntingMarta VelascoTanggal rilis 23 September 2013 (2013-09-23) (Festival Film San Sebastián) 31 Oktober 2013 (2013-10-31) (Spanyol) Durasi105 menitNegaraSpanyolBahasaSpanyol Living Is Easy with Eyes Closed (bahasa Spanyol: Vivir es fácil c...

 

 

Kevin AckermannNazionalità Svezia Altezza177 cm Calcio RuoloCentrocampista Squadra Brommapojkarna CarrieraGiovanili  Azalea BK IFK Göteborg2014-2016 Angered MBIK2017 Häcken Squadre di club1 2016 Angered United17 (1)2017-2019 Häcken2 (0)2020-2022 Örgryte62 (5)[1]2023- Brommapojkarna25 (3) Nazionale 2016-2018 Svezia U-1720 (2)2018 Svezia U-192 (0)2024- Svezia1 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole pa...

 

 

ضريح وخانقاه الشيخ أبو إسحقمعلومات عامةنوع المبنى ضريح وخانقاهالمكان كازرون[1] المنطقة الإدارية كازرون البلد  إيرانالاستعمال ضريح الصفة التُّراثيَّةتصنيف تراثي المعالم الوطنية الإيرانية[1] (1977 – ) تعديل - تعديل مصدري - تعديل ويكي بيانات ضريح مير محمد أهرم (بالفا...

Australian footballer Patrick Kisnorbo Kisnorbo playing for Leicester City in 2008Personal informationFull name Patrick Fabio Maxime Kisnorbo[1]Date of birth (1981-03-24) 24 March 1981 (age 43)Place of birth Melbourne, AustraliaHeight 1.88 m (6 ft 2 in)[2]Position(s) Centre-back, defensive midfielderTeam informationCurrent team Melbourne Victory (coach)Youth career Thomastown Devils North Glenroy Essendon City Fawkner Blues Bulleen Zebras Richmond SC South ...

 

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. درز وتدي صخري الاسم العلميsutura sphenopetrosafissura sphenopetrosa منظر علوي لقاعدة الجمجمة. الد�...

 

 

Physical quantity This article is about the scalar physical quantity. For an overview of and topical guide to energy, see Outline of energy. For other uses, see Energy (disambiguation). Energetic redirects here. For other uses, see Energetic (disambiguation). EnergyA plasma globe, using electrical energy to create plasma, light, heat, movement and a faint soundCommon symbolsESI unitjouleOther unitskW⋅h, BTU, calorie, eV, erg, foot-poundIn SI base unitsJ = kg⋅m2⋅s−2Extensive?...

「コッシー」はこの項目へ転送されています。NHKの子供向け番組「みいつけた!」のキャラクターについては「みいつけた!#登場人物」をご覧ください。 こしじ ふぶき越路 吹雪 『婦人生活』1952年1月号より本名 内藤 美保子(旧姓:河野)生年月日 (1924-02-18) 1924年2月18日没年月日 (1980-11-07) 1980年11月7日(56歳没)出生地 日本 東京府東京市麹町区(現・東京都千代田区麹�...

 

 

Various ancient Neolithic and Bronze Age cultures in China Yangtze basin Asian rice, grown since the 9th millennium BC Skeleton and burial vessels of the Qujialing culture (3400–2600 BC) Part of a series on theHistory of China Timeline Dynasties Historiography Prehistoric Paleolithic Neolithic (c. 8500 – c. 2000 BCE) Yellow, Yangtze, and Liao civilization Ancient Xia (c. 2070 – c. 1600 BCE) Shang (c. 1600 – c. 1046 BCE) Late Shang (c....

 

 

2002 French legislative election ← 1997 9 June 2002 (first round)16 June 2002 (second round) 2007 → ← outgoing memberselected members →All 577 seats in the French National Assembly289 seats needed for a majorityTurnout64.42% ( 3.50pp) (first round)60.32% ( 10.75pp) (second round)   First party Second party Third party   Leader Jean-Pierre Raffarin François Hollande Jean-Marie Le Pen Party UMP PS FN Leader's seat Vienne(Senate) Corr�...

Chapter of the New Testament This article is about the chapter of the Bible. For Pope John 21, see Pope John XXI. John 21← chapter 20Acts 1 →John 21:11–14, 22–24 in Papyrus 122 (4th/5th century)BookGospel of JohnCategoryGospelChristian Bible partNew TestamentOrder in the Christian part4 Part of a series of articles onJohn in the BibleSaint John the Evangelist, Domenichino Johannine literature Gospel Epistles First Second Third Revelation Events Authorship Apostle Beloved dis...

 

 

Archer William HoskingsMatheson's Terrace, ClaremontBorn(1868-05-21)21 May 1868Surry Hills, New South Wales, AustraliaDied15 June 1912(1912-06-15) (aged 44)Johannesburg, South AfricaNationalityAustralianEducationNewington CollegeSydney Technical CollegeRoyal Academy SchoolsOccupationArchitectSpouseWinifred VivianParent(s)Emily (née Barett) and William Henry Hoskings Archer William Hoskings (21 May 1868 – 15 June 1912) was an Australian born architect who practiced in Sydney, London, ...