This article uses technical mathematical notation for logarithms. All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or loge(x).
More precise estimates of π(x) are now known. For example, in 2002, Kevin Ford proved that[7]
Mossinghoff and Trudgian proved[8] an explicit upper bound for the difference between π(x) and li(x):
For values of x that are not unreasonably large, li(x) is greater than π(x). However, π(x) − li(x) is known to change sign infinitely many times. For a discussion of this, see Skewes' number.
where
μ(n) is the Möbius function, li(x) is the logarithmic integral function, ρ indexes every zero of the Riemann zeta function, and li(xρ/n) is not evaluated with a branch cut but instead considered as Ei(ρ/n log x) where Ei(x) is the exponential integral. If the trivial zeros are collected and the sum is taken only over the non-trivial zeros ρ of the Riemann zeta function, then π0(x) may be approximated by[10]
The Riemann hypothesis suggests that every such non-trivial zero lies along Re(s) = 1/2.
Table of π(x), x/log(x), and li(x)
The table shows how the three functions π(x), x/log(x), and li(x) compared at powers of 10. See also,[3][11] and[12]
The value for π(1024) was originally computed by J. Buethe, J. Franke, A. Jost, and T. Kleinjung assuming the Riemann hypothesis.[13]
It was later verified unconditionally in a computation by D. J. Platt.[14]
The value for π(1025) is due to J. Buethe, J. Franke, A. Jost, and T. Kleinjung.[15]
The value for π(1026) was computed by D. B. Staple.[16] All other prior entries in this table were also verified as part of that work.
The values for 1027, 1028, and 1029 were announced by David Baugh and Kim Walisch in 2015,[17] 2020,[18] and 2022,[19] respectively.
Algorithms for evaluating π(x)
A simple way to find π(x), if x is not too large, is to use the sieve of Eratosthenes to produce the primes less than or equal to x and then to count them.
A more elaborate way of finding π(x) is due to Legendre (using the inclusion–exclusion principle): given x, if p1, p2,…, pn are distinct prime numbers, then the number of integers less than or equal to x which are divisible by no pi is
(where ⌊x⌋ denotes the floor function). This number is therefore equal to
when the numbers p1, p2,…, pn are the prime numbers less than or equal to the square root of x.
In a series of articles published between 1870 and 1885, Ernst Meissel described (and used) a practical combinatorial way of evaluating π(x): Let p1, p2,…, pn be the first n primes and denote by Φ(m,n) the number of natural numbers not greater than m which are divisible by none of the pi for any i ≤ n. Then
Given a natural number m, if n = π(3√m) and if μ = π(√m) − n, then
Using this approach, Meissel computed π(x), for x equal to 5×105, 106, 107, and 108.
In 1959, Derrick Henry Lehmer extended and simplified Meissel's method. Define, for real m and for natural numbers n and k, Pk(m,n) as the number of numbers not greater than m with exactly k prime factors, all greater than pn. Furthermore, set P0(m,n) = 1. Then
where the sum actually has only finitely many nonzero terms. Let y denote an integer such that 3√m ≤ y ≤ √m, and set n = π(y). Then P1(m,n) = π(m) − n and Pk(m,n) = 0 when k ≥ 3. Therefore,
The computation of P2(m,n) can be obtained this way:
where the sum is over prime numbers.
On the other hand, the computation of Φ(m,n) can be done using the following rules:
Using his method and an IBM 701, Lehmer was able to compute the correct value of π(109) and missed the correct value of π(1010) by 1.[20]
Further improvements to this method were made by Lagarias, Miller, Odlyzko, Deléglise, and Rivat.[21]
Other prime-counting functions
Other prime-counting functions are also used because they are more convenient to work with.
Riemann's prime-power counting function
Riemann's prime-power counting function is usually denoted as Π0(x) or J0(x). It has jumps of 1/n at prime powers pn and it takes a value halfway between the two sides at the discontinuities of π(x). That added detail is used because the function may then be defined by an inverse Mellin transform.
Formally, we may define Π0(x) by
where the variable p in each sum ranges over all primes within the specified limits.
Formulas for prime-counting functions come in two kinds: arithmetic formulas and analytic formulas. Analytic formulas for prime-counting were the first used to prove the prime number theorem. They stem from the work of Riemann and von Mangoldt, and are generally known as explicit formulae.[23]
Here ρ are the zeros of the Riemann zeta function in the critical strip, where the real part of ρ is between zero and one. The formula is valid for values of x greater than one, which is the region of interest. The sum over the roots is conditionally convergent, and should be taken in order of increasing absolute value of the imaginary part. Note that the same sum over the trivial roots gives the last subtrahend in the formula.
For Π0(x) we have a more complicated formula
Again, the formula is valid for x > 1, while ρ are the nontrivial zeros of the zeta function ordered according to their absolute value. The integral is equal to the series over the trivial zeros:
The first term li(x) is the usual logarithmic integral function; the expression li(xρ) in the second term should be considered as Ei(ρ log x), where Ei is the analytic continuation of the exponential integral function from negative reals to the complex plane with branch cut along the positive reals.
is Riemann's R-function[24] and μ(n) is the Möbius function. The latter series for it is known as Gram series.[25][26] Because log x < x for all x > 0, this series converges for all positive x by comparison with the series for ex. The logarithm in the Gram series of the sum over the non-trivial zero contribution should be evaluated as ρ log x and not log xρ.
Folkmar Bornemann proved,[27] when assuming the conjecture that all zeros of the Riemann zeta function are simple,[note 1] that
where ρ runs over the non-trivial zeros of the Riemann zeta function and t > 0.
The sum over non-trivial zeta zeros in the formula for π0(x) describes the fluctuations of π0(x) while the remaining terms give the "smooth" part of prime-counting function,[28] so one can use
as a good estimator of π(x) for x > 1. In fact, since the second term approaches 0 as x → ∞, while the amplitude of the "noisy" part is heuristically about √x/log x, estimating π(x) by R(x) alone is just as good, and fluctuations of the distribution of primes may be clearly represented with the function
Inequalities
Here are some useful inequalities for π(x).
for x ≥ 17.
The left inequality holds for x ≥ 17 and the right inequality holds for x > 1. The constant 1.25506 is 30 log 113/113 to 5 decimal places, as π(x) log x/x has its maximum value at x = 113.[29]
^Mossinghoff, Michael J.; Trudgian, Timothy S. (2015). "Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function". J. Number Theory. 157: 329–349. arXiv:1410.3926. doi:10.1016/J.JNT.2015.05.010. S2CID117968965.
^Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. Vol. 126 (2nd ed.). Birkhäuser. pp. 50–51. ISBN0-8176-3743-5.
My Love from the StarNama alternatif You Who Came From the Stars My Love From Another Star You Who Came From Another Stars Korea별에서 온 그대 Genre Drama Roman Ditulis olehPark Ji-EunSutradaraJang Tae-YooPemeran Jun Ji-hyun Kim Soo-hyun Park Hae-jin Yoo In-na Negara asalKorea SelatanBahasa asliBahasa KoreaJmlh. musim1Jmlh. episode21ProduksiProduser eksekutifChoi Moon-sukPengaturan kameraMulti-kameraDurasi60 menitRumah produksiHB EntertainmentDistributorSBS (2013-2014)RCTI (2017)GTV (20...
W. S. Gilbert Sir William Schwenck Gilbert (18 November 1836 – 29 Mei 1911) adalah seorang penulis Inggris yang terkenal dengan 14 opera yang ditulisnya bersama dengan Sir Arthur Sullivan, misalnya H.M.S. Pinafore, The Pirates of Penzance, dan The Mikado. Gilbert lahir di 17 Southampton Street, Strand, London. Ayahnya, William Gilbert, adalah dokter bedah angkatan laut yang kemudian menjadi penulis novel dan cerita pendek. Ibu Gilbert adalah Ann Morris. Mereka bercerai pada 1876. Glbert mem...
Dutch cyclist Bram de GrootPersonal informationFull nameBram de GrootBorn (1974-12-18) 18 December 1974 (age 48)Alkmaar, the NetherlandsHeight1.73 m (5 ft 8 in)Weight65 kg (143 lb)Team informationCurrent teamRetiredDisciplineRoadRoleRiderProfessional team1999–2009Rabobank Bram de Groot (born on 18 December 1974, in Alkmaar) is a Dutch former professional road bicycle racer who last rode for UCI ProTour team Rabobank. Major results Uniqa Classic - ...
American politician Henry BurkMember of the U.S. House of Representativesfrom Pennsylvania's 3rd districtIn officeMarch 4, 1901 – December 5, 1903Preceded byWilliam McAleerSucceeded byGeorge A. Castor Personal detailsBorn(1850-09-26)September 26, 1850Kingdom of WürttembergDiedDecember 5, 1903(1903-12-05) (aged 53)Resting placeHoly Sepulchre Cemetery, Cheltenham Township, Pennsylvania, U.S.Political partyRepublicanSpouseEllen Carney Henry Burk (September 26, 1850 �...
UpfieldInformasi umumJenis layananLayanan suburban MelbourneTeknis sarana dan prasarana Jalur kereta api Upfield adalah jalur kereta api komuter Public Transport Victoria (PTV) di Melbourne, Victoria. Jalur ini melewati daerah . Peta Jalur kereta api Upfield Legenda 0.0 km Flinders Street (FSS) Zone 1 1.2 km Southern Cross (SSS) Zone 1 City Loop 2.9 km North Melbourne (NME) Zone 1 Craigieburn, Sunbury and Werribee lines 4.5 km Macaulay (MAC) Zone 1 5.3 km Flemington Bridge (FBD) Zone 1 6.7 km...
احتجاجات هايتي 2018–2023 حرق الإطارات أثناء الاحتجاجات في 11 فبراير 2019 التاريخ 7 يوليو 2018 (2018-07-07) – مستمرة) بداية: 7 فبراير 2019 المكان هايتي الأسباب سوء استخدام القروض الممنوحة من فنزويلا زيادة ضرائب المحروقات (البنزين والديزل والكيروسين) الفساد في هايتي الأهداف استق�...
American politician H. H. ClelandCleland in 1913Member of the Washington House of Representatives for the 5th districtIn office1913–1915 Personal detailsBorn(1884-10-04)October 4, 1884Illinois, United StatesDiedOctober 23, 1959(1959-10-23) (aged 75)San Diego County, California, United StatesPolitical partyRepublican Hance H. Cleland (October 4, 1884 – October 23, 1959) was an American politician in the state of Washington. He served in the Washington House of Representatives....
Межгосударственный совет по стандартизации, метрологии и сертификации Міждержавна рада зі стандартизації, метрології та сертифікаціїТип організаціяЗасновано 1992Країна БілорусьШтаб-квартира Білорусь, Мінськ Вебсайт: easc.by Міждержавна рада зі стандартизації, м�...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. PCSJenis kabelFibre-opticMulai dibangun2013Selesai dibangun2014Kapasitas maksimum40 gbit/dtkPembangunNEC IndonesiaJangkauanKepulauan di PapuaPemilikTelkomSistem kabel Papua (bahasa Inggris: Papua Cable System, disingkat PCS) adalah kabel komunikasi baw...
1992 video game This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Great Greed – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) 1992 video gameGreat GreedNorth American cover artDeveloper(s)NamcoPublisher(s)NamcoPlatform(s)Game BoyReleaseJP: Septembe...
Final Piala Winners Eropa 1982TurnamenPiala Winners Eropa 1981–1982 Barcelona Standard Liège 2 1 Tanggal12 Mei 1982StadionCamp Nou, BarcelonaWasitWalter Eschweiler (Jerman Barat)Penonton100.000← 1981 1983 → Final Piala Winners Eropa 1982 adalah pertandingan final ke-22 dari turnamen sepak bola Piala Winners Eropa untuk menentukan juara musim 1981–1982. Pertandingan ini mempertemukan tim Spanyol Barcelona dengan tim Belgia Standard Liège dan diselenggarakan pada 12 Mei 1...
У этого термина существуют и другие значения, см. Планктон (значения). Бокоплав Планкто́н (греч. πλανκτόν — «блуждающий») — разнородные, в основном мелкие организмы, свободно дрейфующие в толще воды и не способные, в отличие от нектона, двигаться против течения[1]...
Expansion to the video game The Elder Scrolls IV: Oblivion 2006 video gameThe Elder Scrolls IV:Knights of the NineDeveloper(s)Bethesda Game StudiosPublisher(s)Bethesda SoftworksEU: UbisoftSeriesThe Elder ScrollsEngineGamebryoPlatform(s)Microsoft WindowsXbox 360PlayStation 3ReleaseWindows, Xbox 360NA: November 21, 2006AU: November 23, 2006EU: November 24, 2006PlayStation 3NA: March 20, 2007AU: April 26, 2007EU: April 27, 2007Genre(s)Action role-playingMode(s)Single-player The Elder Scrolls IV:...
Kutubuan language of New Guinea FasuWest KutubuanNamo MeRegionNew GuineaNative speakers(1,200 cited 1981)[1](750 Fasu, 300 Namuni, 150 Some)Language familyPapuan Gulf ? KikorianKutubuanFasuDialects Some Kaibu (Kaipu) Namome (Namumi, Namuni) Language codesISO 639-3faaGlottologfasu1242ELPFasuMap: The Fasu language of New Guinea The Fasu language Trans–New Guinea languages Other Papuan languages Austronesian languages Uni...
2020 British filmVillainFilm posterDirected byPhilip BarantiniWritten byGeorge RussoGreg HallProduced byBart RuspoliStarringCraig FairbrassCinematographyMatthew LewisEdited byAlex FountainMusic byDavid RidleyAaron MayDistributed bySaban FilmsRelease date 22 May 2020 (2020-05-22) (United States) Running time97 minutesCountryUnited KingdomLanguageEnglish Villain is a 2020 British action crime drama film directed by Philip Barantini and starring Craig Fairbrass. It is Barantin...
Fernando Poo Territorio(Ocupación británica de Fernando Poo) 1827-1843 Bandera En la costa del Golfo de Guinea de África, las islas de Fernando Poo y Annobón.Entidad Territorio(Ocupación británica de Fernando Poo) • País Reino UnidoIdioma oficial inglésPeríodo histórico Imperio británico • 1827 Establecido • 1843 Disuelto Precedido por Sucedido por ← → [editar datos en Wikidata] El imperio británico ocupó la isla de Fernando Poo (actual isla de ...
Species of dragonfly Neon skimmer top male bottom female Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Odonata Infraorder: Anisoptera Family: Libellulidae Genus: Libellula Species: L. croceipennis Binomial name Libellula croceipennis(Selys, 1868) [1] The neon skimmer (Libellula croceipennis) is a dragonfly of the skimmer family. It can be found near ponds, lakes and slow moving streams in the southwest United States, C...
Election in Maine Main article: 1996 United States presidential election 1996 United States presidential election in Maine ← 1992 November 5, 1996 2000 → Nominee Bill Clinton Bob Dole Ross Perot Party Democratic Republican Reform Home state Arkansas Kansas Texas Running mate Al Gore Jack Kemp James Campbell Electoral vote 4 0 0 Popular vote 312,788 186,378 85,970 Percentage 51.62% 30.76% 14.19% County results Municipality results Clinton ...
Figure of speech referring to real estate scams A freshwater swamp in Florida Swampland in Florida is a figure of speech referring to real estate scams in which a seller misrepresents unusable swampland as developable property. These types of unseen property scams became widely known in the United States in the 20th century, and the phrase is often used metaphorically for any scam that misrepresents what is being sold. Expressions like If you believe that, then I have swampland in Florida to ...