Mineral physics

Mineral physics is the science of materials that compose the interior of planets, particularly the Earth. It overlaps with petrophysics, which focuses on whole-rock properties. It provides information that allows interpretation of surface measurements of seismic waves, gravity anomalies, geomagnetic fields and electromagnetic fields in terms of properties in the deep interior of the Earth. This information can be used to provide insights into plate tectonics, mantle convection, the geodynamo and related phenomena.

Laboratory work in mineral physics require high pressure measurements. The most common tool is a diamond anvil cell, which uses diamonds to put a small sample under pressure that can approach the conditions in the Earth's interior.

Creating high pressures

Shock compression

Many of the pioneering studies in mineral physics involved explosions or projectiles that subject a sample to a shock. For a brief time interval, the sample is under pressure as the shock wave passes through. Pressures as high as any in the Earth have been achieved by this method. However, the method has some disadvantages. The pressure is very non-uniform and is not adiabatic, so the pressure wave heats the sample up in passing. The conditions of the experiment must be interpreted in terms of a set of pressure-density curves called Hugoniot curves.[1]

Multi-anvil press

Multi-anvil presses involve an arrangement of anvils to concentrate pressure from a press onto a sample. Typically the apparatus uses an arrangement eight cube-shaped tungsten carbide anvils to compress a ceramic octahedron containing the sample and a ceramic or Re metal furnace. The anvils are typically placed in a large hydraulic press. The method was developed by Kawai and Endo in Japan.[2] Unlike shock compression, the pressure exerted is steady, and the sample can be heated using a furnace. Pressures of about 28 GPa (equivalent to depths of 840 km),[3] and temperatures above 2300 °C,[4] can be attained using WC anvils and a lanthanum chromite furnace. The apparatus is very bulky and cannot achieve pressures like those in the diamond anvil cell (below), but it can handle much larger samples that can be quenched and examined after the experiment.[5] Recently, sintered diamond anvils have been developed for this type of press that can reach pressures of 90 GPa (2700 km depth).[6]

Diamond anvil cell

Schematics of the core of a diamond anvil cell. The diamond size is a few millimeters at most

The diamond anvil cell is a small table-top device for concentrating pressure. It can compress a small (sub-millimeter sized) piece of material to extreme pressures, which can exceed 3,000,000 atmospheres (300 gigapascals).[7] This is beyond the pressures at the center of the Earth. The concentration of pressure at the tip of the diamonds is possible because of their hardness, while their transparency and high thermal conductivity allow a variety of probes can be used to examine the state of the sample. The sample can be heated to thousands of degrees.

Creating high temperatures

Achieving temperatures found within the interior of the earth is just as important to the study of mineral physics as creating high pressures. Several methods are used to reach these temperatures and measure them. Resistive heating is the most common and simplest to measure. The application of a voltage to a wire heats the wire and surrounding area. A large variety of heater designs are available including those that heat the entire diamond anvil cell (DAC) body and those that fit inside the body to heat the sample chamber. Temperatures below 700 °C can be reached in air due to the oxidation of diamond above this temperature. With an argon atmosphere, higher temperatures up to 1700 °C can be reached without damaging the diamonds. A tungsten resistive heater with Ar in a BX90 DAC was reported to achieve temperatures of 1400 °C.[8]

Laser heating is done in a diamond-anvil cell with Nd:YAG or CO2 lasers to achieve temperatures above 6000k. Spectroscopy is used to measure black-body radiation from the sample to determine the temperature. Laser heating is continuing to extend the temperature range that can be reached in diamond-anvil cell but suffers two significant drawbacks. First, temperatures below 1200 °C are difficult to measure using this method. Second, large temperature gradients exist in the sample because only the portion of sample hit by the laser is heated.[citation needed]

Properties of materials

Equations of state

To deduce the properties of minerals in the deep Earth, it is necessary to know how their density varies with pressure and temperature. Such a relation is called an equation of state (EOS). A simple example of an EOS that is predicted by the Debye model for harmonic lattice vibrations is the Mie-Grünheisen equation of state:

where is the heat capacity and is the Debye gamma. The latter is one of many Grünheisen parameters that play an important role in high-pressure physics. A more realistic EOS is the Birch–Murnaghan equation of state.[9]: 66–73 

Interpreting seismic velocities

Inversion of seismic data give profiles of seismic velocity as a function of depth. These must still be interpreted in terms of the properties of the minerals. A very useful heuristic was discovered by Francis Birch: plotting data for a large number of rocks, he found a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight with density :[10][11]

.

This relationship became known as Birch's law. This makes it possible to extrapolate known velocities for minerals at the surface to predict velocities deeper in the Earth.

Other physical properties

Methods of crystal interrogation

There are a number of experimental procedures designed to extract information from both single and powdered crystals. Some techniques can be used in a diamond anvil cell (DAC) or a multi anvil press (MAP). Some techniques are summarized in the following table.

Technique Anvil Type Sample Type Information Extracted Limitations
X-ray Diffraction(XRD)[12] DAC or MAP Powder or Single Crystal cell parameters
Electron Microscopoy Neither Powder or Single Crystal Symmetry Group Surface Measurements Only
Neutron Diffraction Neither Powder cell parameters Large Sample needed
Infrared spectroscopy[13] DAC Powder, Single Crystal or Solution Chemical Composition Not all materials are IR active
Raman Spectroscopy[13] DAC Powder, Single Crystal or Solution Chemical Composition Not all materials are Raman active
Brillouin Scattering[14] DAC Single Crystal Elastic Moduli Need optically thin sample
Ultrasonic Interferometry[15] DAC or MAP Single Crystal Elastic Moduli

First principles calculations

Using quantum mechanical numerical techniques, it is possible to achieve very accurate predictions of crystal's properties including structure, thermodynamic stability, elastic properties and transport properties. The limit of such calculations tends to be computing power, as computation run times of weeks or even months are not uncommon.[9]: 107–109 

History

The field of mineral physics was not named until the 1960s, but its origins date back at least to the early 20th century and the recognition that the outer core is fluid because seismic work by Oldham and Gutenberg showed that it did not allow shear waves to propagate.[16]

A landmark in the history of mineral physics was the publication of Density of the Earth by Erskine Williamson, a mathematical physicist, and Leason Adams, an experimentalist. Working at the Geophysical Laboratory in the Carnegie Institution of Washington, they considered a problem that had long puzzled scientists. It was known that the average density of the Earth was about twice that of the crust, but it was not known whether this was due to compression or changes in composition in the interior. Williamson and Adams assumed that deeper rock is compressed adiabatically (without releasing heat) and derived the Adams–Williamson equation, which determines the density profile from measured densities and elastic properties of rocks. They measured some of these properties using a 500-ton hydraulic press that applied pressures of up to 1.2 gigapascals (GPa). They concluded that the Earth's mantle had a different composition than the crust, perhaps ferromagnesian silicates, and the core was some combination of iron and nickel. They estimated the pressure and density at the center to be 320 GPa and 10,700 kg/m3, not far off the current estimates of 360 GPa and 13,000 kg/m3.[17]

The experimental work at the Geophysical Laboratory benefited from the pioneering work of Percy Bridgman at Harvard University, who developed methods for high-pressure research that led to a Nobel Prize in Physics.[17] A student of his, Francis Birch, led a program to apply high-pressure methods to geophysics. [18] Birch extended the Adams-Williamson equation to include the effects of temperature.[17] In 1952, he published a classic paper, Elasticity and constitution of the Earth's interior, in which he established some basic facts: the mantle is predominantly silicates; there is a phase transition between the upper and lower mantle associated with a phase transition; and the inner and outer core are both iron alloys.[19]

References

  1. ^ Ahrens, T. J. (1980). "Dynamic compression of Earth materials". Science. 207 (4435): 1035–1041. Bibcode:1980Sci...207.1035A. doi:10.1126/science.207.4435.1035. PMID 17759812. S2CID 21791428.
  2. ^ Kawai, Naoto (1970). "The generation of ultrahigh hydrostatic pressures by a split sphere apparatus". Review of Scientific Instruments. 41 (8): 1178–1181. Bibcode:1970RScI...41.1178K. doi:10.1063/1.1684753.
  3. ^ Kubo, Atsushi; Akaogi, Masaki (2000). "Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite". Physics of the Earth and Planetary Interiors. 121 (1–2): 85–102. Bibcode:2000PEPI..121...85K. doi:10.1016/S0031-9201(00)00162-X.
  4. ^ Zhang, Jianzhong; Liebermann, Robert C.; Gasparik, Tibor; Herzberg, Claude T.; Fei, Yingwei (1993). "Melting and subsolidus relations of silica at 9 to 14 GPa". Journal of Geophysical Research. 98 (B11): 19785–19793. Bibcode:1993JGR....9819785Z. doi:10.1029/93JB02218.
  5. ^ "Studying the Earth's formation: The multi-anvil press at work". Lawrence Livermore National Laboratory. Archived from the original on 28 May 2010. Retrieved 29 September 2010.
  6. ^ Zhai, Shuangmeng; Ito, Eiji (2011). "Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils". Geoscience Frontiers. 2 (1): 101–106. Bibcode:2011GeoFr...2..101Z. doi:10.1016/j.gsf.2010.09.005.
  7. ^ Hemley, Russell J.; Ashcroft, Neil W. (1998). "The Revealing Role of Pressure in the Condensed Matter Sciences". Physics Today. 51 (8): 26. Bibcode:1998PhT....51h..26H. doi:10.1063/1.882374.
  8. ^ Yan, J., Doran, A., MacDowell, A.A. and Kalkan, B., 2021. A tungsten external heater for BX90 diamond anvil cells with a range up to 1700 K. Review of Scientific Instruments, 92(1), p.013903.
  9. ^ a b Poirier 2000
  10. ^ Birch, F. (1961). "The velocity of compressional waves in rocks to 10 kilobars. Part 2". Journal of Geophysical Research. 66 (7): 2199–2224. Bibcode:1961JGR....66.2199B. doi:10.1029/JZ066i007p02199.
  11. ^ Birch, F. (1961). "Composition of the Earth's mantle". Geophysical Journal of the Royal Astronomical Society. 4: 295–311. Bibcode:1961GeoJ....4..295B. doi:10.1111/j.1365-246X.1961.tb06821.x.
  12. ^ Burnley, Pamela. "Synchrotron X-Ray Diffraction". Science Education Resource Center. Carleton College. Retrieved 18 September 2015.
  13. ^ a b Thomas, Sylvia-Monique. "Infrared and Raman Spectroscopy". Science Education Resource Center. Carleton College. Retrieved 18 September 2015.
  14. ^ Thomas, Sylvia-Monique. "Brillouin Spectroscopy". Science Education Resource Center. Carleton College. Retrieved 18 September 2015.
  15. ^ Burnley, Pamela. "Ultrasonic Measurements". Science Education Resource Center. Carleton College. Retrieved 18 September 2015.
  16. ^ Price, G. David (October 2007). "2.01 Overview – Mineral physics: past, present, and future" (PDF). In Price, G. David (ed.). Mineral Physics. Elsevier. pp. 1–6. ISBN 9780444535764. Retrieved 27 September 2017.
  17. ^ a b c Hemley, Russell J. (April 2006). "Erskine Williamson, extreme conditions, and the birth of mineral physics". Physics Today. 59 (4): 50–56. Bibcode:2006PhT....59d..50H. doi:10.1063/1.2207038.
  18. ^ Prewitt, Charles T. (2003). "Mineral Physics: Looking ahead". Journal of Mineralogical and Petrological Sciences. 98 (1): 1–8. Bibcode:2003JMPeS..98....1P. doi:10.2465/jmps.98.1.
  19. ^ Liebermann, Robert Cooper; Prewitt, Charles T. (March 2014). "From Airlie House in 1977 to Granlibakken in 2012: 35Years of evolution of mineral physics". Physics of the Earth and Planetary Interiors. 228: 36–45. Bibcode:2014PEPI..228...36L. doi:10.1016/j.pepi.2013.06.002.

Further reading

Read other articles:

Untuk kegunaan lain, lihat Nila (disambiguasi). Nila Baptisia australis     Koordinat warnaTriplet hex#6F00FFsRGBB    (r, g, b)(111, 0, 255)CMYKH   (c, m, y, k)(57, 100, 0, 0)HSV       (h, s, v)(266°, 100%, 100%)SumberPerBang.dkB: Dinormalkan ke [0–255] (bita)H: Dinormalkan ke [0–100] (ratusan) Nila atau indigo (atau spektral indigo) adalah warna pada spektrum yang panjang gelombangnya antara 450 dan 420 nanometer, terletak di antara biru ...

 

U.S. Palmese 1912Calcio Neroverdi;[1] Pianigiani;[2] La centenaria[3] Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Nero, verde Simboli Palma[4] Inno Forza Palmese Alé[5]Gianni Penna Dati societari Città Palmi Nazione  Italia Confederazione UEFA Federazione FIGC Campionato Eccellenza Calabria Fondazione 1912 Presidente Francesco Sergi Allenatore Giuseppe Crucitti Stadio Giuseppe Lopresti(1 500 posti) Palmarès Si invita a ...

 

SDN 1 Sungai BuluhSekolah Dasar Negeri 1 Sungai BuluhInformasiJenisSekolah dasarAkreditasiBNomor Statistik Sekolah1011506021Nomor Pokok Sekolah Nasional30302409Kepala SekolahMahrani, S.PdJumlah kelas10 KelasRentang kelasI, II, III, IV, V, dan VIKurikulumKurikulum 2013 Revisi dan KTSPStatusNegeriAlamatLokasiJl. Raya Sungai Buluh, Sungai Buluh, Barabai, Kalimantan Selatan, IndonesiaTel./Faks....Koordinat-2, 115Surel...MotoMoto...SDN 1 Sungai Buluh adalah salah satu sekolah dasar di Ka...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menamba...

 

Protein-coding gene in the species Homo sapiens SNRPGAvailable structuresPDBHuman UniProt search: PDBe RCSB List of PDB id codes3CW1, 3PGW, 3S6N, 4F7U, 4PJO, 4V98, 4WZJ, 3JCRIdentifiersAliasesSNRPG, SMG, Sm-G, small nuclear ribonucleoprotein polypeptide GExternal IDsOMIM: 603542 HomoloGene: 37730 GeneCards: SNRPG Gene location (Human)Chr.Chromosome 2 (human)[1]Band2p13.3Start70,281,362 bp[1]End70,293,740 bp[1]RNA expression patternBgeeHumanMouse (ortholog)Top expressed...

 

Questa voce sull'argomento contee dell'Iowa è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di JasperconteaLocalizzazioneStato Stati Uniti Stato federato Iowa AmministrazioneCapoluogoNewton Data di istituzione1846 TerritorioCoordinatedel capoluogo41°41′17″N 93°03′41″W / 41.688056°N 93.061389°W41.688056; -93.061389 (Contea di Jasper)Coordinate: 41°41′17″N 93°03′41″W / 41.688056°N...

English TV show personality, author, and filmmaker Nigel BarkerBarker in 2008Born (1972-04-27) 27 April 1972 (age 52)London, EnglandOccupation(s)Fashion photographer, author, spokesperson, judge, filmmaker, former modelSpouse Cristen Barker ​(m. 1999)​Children2Websitehttp://www.nigelbarker.tv/ Nigel Barker (born 27 April 1972) is an English reality TV show personality, fashion photographer, author, spokesperson, filmmaker, and former model. He is best known f...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Massacres of Turkish Cypriots by Greeks and Greek Cypriots Maratha, Santalaris and Aloda massacrePart of atrocities against Turkish Cypriots during the Turkish invasion of CyprusDead bodies of Turkish Cypriot civilians at Sandallar (Santalaris).Locations of massacres against Turkish Cypriots in 1974LocationMaratha, Santalaris, Aloda in CyprusDateAugust 14, 1974; 49 years ago (1974-08-14)TargetTurkish Cypriot civiliansWeaponsMachine guns, sharp toolsDeaths126PerpetratorEOKA B...

明朝关西八卫 赤斤蒙古卫,明朝关西八卫之一,简称赤斤卫,又作赤金卫。 明朝 明朝永乐二年(1404年)元朝丞相苦术之子塔力尼投降明朝,以其所部在赤斤站设置赤斤蒙古千户所,在今甘肃省玉门市西北赤金堡。永乐八年(1410年)升为赤斤卫,正德年间被吐鲁番汗国所破,当地人内徙肃州的南山,赤斤城空。 清朝 清圣祖康熙五十七年(1718年),恢复赤金卫,清世宗雍正...

 

American physicist and nanotechnologist (1930–2017) Mildred DresselhausDresselhaus at the White House in 2012BornMildred Spiewak(1930-11-11)November 11, 1930Brooklyn, New York, U.S.DiedFebruary 20, 2017(2017-02-20) (aged 86)Cambridge, Massachusetts, U.S.Alma materHunter CollegeCambridge UniversityRadcliffe CollegeUniversity of ChicagoKnown forCarbon nanotubesSpouses Frederick Reif ​(divorced)​ Gene Dresselhaus ​(m. 1958)​ A...

 

A typical package of Uirō Medicine The Headquarters of Uirō Co., Ltd., Odawara The stone monument commemorating the birth of Uirō at Myōraku-ji Temple, Hakata-ku, Fukuoka Uirō (Japanese: ういらう or 外郎) sold by Uirō Company in Odawara, Kanagawa, usually is a well-known traditional Japanese medicine. Origin of uirō The origin of uirō in Odawara goes back to 14th-century China. Chin En-yū (陳延祐, Chen Yanyou in Mandarin Chinese), a medical doctor in Taizhou, Zhejiang Provin...

Pour les articles homonymes, voir Năstase. Ilie Năstase Ilie Nastase lors de la Coupe Davis contre les Pays-Bas, le 18 mai 1973. Carrière professionnelle 1969 (Pro indépendant) et 1974 (Pro) – Octobre 1985 Nationalité  Roumanie Naissance 19 juillet 1946 (78 ans)Bucarest Taille 1,80 m (5′ 11″) Prise de raquette Droitier, revers à une main Gains en tournois 2 076 771 $ Hall of Fame Membre depuis 1991 Palmarès En simple Titres 87 dont 58 enregistr...

 

Durmenachcomune Durmenach – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Alto Reno ArrondissementAltkirch CantoneAltkirch TerritorioCoordinate47°32′N 7°20′E47°32′N, 7°20′E (Durmenach) Altitudine360 e 461 m s.l.m. Superficie5,76 km² Abitanti952[1] (2009) Densità165,28 ab./km² Altre informazioniCod. postale68480 Fuso orarioUTC+1 Codice INSEE68075 CartografiaDurmenach Sito istituzionaleModifica dati su Wikidata · Manual...

 

Cet article est une ébauche concernant l’astronomie et une galaxie ou un groupe, un amas, un nuage ou un superamas de galaxies. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Les galaxies naines elliptiques ou galaxies elliptiques naines sont, comme leur nom l'indique, des galaxies à la fois elliptiques et naines, beaucoup plus petites que les autres galaxies. On en retrouve souvent dans les amas de galaxie...

Music genre Neo-psychedeliaOther namesAcid punkStylistic origins Psychedelia[1] post-punk[1] new wave[2] Cultural originsLate 1970s, United States and United KingdomDerivative forms Hypnagogic pop[3] Subgenres Dream pop[4] shoegazing[4] Local scenes Elephant 6 Paisley Underground Other topics Acid rock alternative rock indie music scene list of artists jangle pop psychedelic pop psychedelic rock recording studio as an instrument space rock stone...

 

Ecuadorean football club This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: América de Quito – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) Football clubAmérica de QuitoFull nameClub Deportivo AméricaNickname(s)El Equipo CebollitaVerdolaga El Escuadrón Verde (The Green S...

 

Pour l’article homonyme, voir Pont Salario. Cet article est une ébauche concernant Rome. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Localisation de Salario sur la carte administrative de Rome. Salario est un quartiere (quartier) situé au nord de Rome en Italie prenant son nom de la via Salaria qui le traverse. Il est désigné dans la nomenclature administrative par Q.IV et fait partie du Municipio II. ...

جوجل كاردبوردمعلومات عامةالنوع منصة واقع افتراضيالصانع جوجل، شركات الطرف الثالثالمطور جوجل AR و VR الانتاج 15 مليونموقع الويب www.google.com/get/cardboard/أهم التواريختاريخ الإصدار 25 يونيو 2014؛ منذ 10 سنين (2014-06-25)توقف الإصدار 3 مارس 2021؛ منذ 3 سنين (2021-03-03)(العارض الرسمي، ...

 

Campaign in Late Postclassic Mesoamerica Spanish conquest of ChiapasPart of the Spanish conquest of MexicoDatec. 1523 – c. 1695LocationChiapas, MexicoResult Spanish victoryTerritorialchanges Incorporation of Chiapas into the Viceroyalty of New Spain and the Captaincy General of GuatemalaBelligerents Spanish Empire Zoque people Chiapaneca people Independent Maya, including: Lakandon Chʼol people Tojolabal people Tzotzil peopleCommanders and leaders Pedro de PortocarreroPedro de Alvarado Die...