Formula for primes

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

Formulas based on Wilson's theorem

A simple formula is

for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number . But when is not prime, the first factor becomes zero and the formula produces the prime number 2.[1] This formula is not an efficient way to generate prime numbers because evaluating requires about multiplications and reductions modulo .

In 1964, Willans gave the formula

for the th prime number .[2] This formula reduces to[3][4] ; that is, it tautologically defines as the smallest integer m for which the prime-counting function is at least n. This formula is also not efficient. In addition to the appearance of , it computes by adding up copies of ; for example, .

The articles What is an Answer? by Herbert Wilf (1982)[5] and Formulas for Primes by Underwood Dudley (1983)[6] have further discussion about the worthlessness of such formulas.

Formula based on a system of Diophantine equations

Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers:[7]

The 14 equations α0, …, α13 can be used to produce a prime-generating polynomial inequality in 26 variables:

That is,

is a polynomial inequality in 26 variables, and the set of prime numbers is identical to the set of positive values taken on by the left-hand side as the variables a, b, …, z range over the nonnegative integers.

A general theorem of Matiyasevich says that if a set is defined by a system of Diophantine equations, it can also be defined by a system of Diophantine equations in only 9 variables.[8] Hence, there is a prime-generating polynomial inequality as above with only 10 variables. However, its degree is large (in the order of 1045). On the other hand, there also exists such a set of equations of degree only 4, but in 58 variables.[9]

Mills' formula

The first such formula known was established by W. H. Mills (1947), who proved that there exists a real number A such that, if

then

is a prime number for all positive integers n.[10] If the Riemann hypothesis is true, then the smallest such A has a value of around 1.3063778838630806904686144926... (sequence A051021 in the OEIS) and is known as Mills' constant.[11] This value gives rise to the primes , , , ... (sequence A051254 in the OEIS). Very little is known about the constant A (not even whether it is rational). This formula has no practical value, because there is no known way of calculating the constant without finding primes in the first place.

There is nothing special about the floor function in the formula. Tóth proved that there also exists a constant such that

is also prime-representing for .[12]

In the case , the value of the constant begins with 1.24055470525201424067... The first few primes generated are:

Without assuming the Riemann hypothesis, Elsholtz developed several prime-representing functions similar to those of Mills. For example, if , then is prime for all positive integers . Similarly, if , then is prime for all positive integers .[13]

Wright's formula

Another tetrationally growing prime-generating formula similar to Mills' comes from a theorem of E. M. Wright. He proved that there exists a real number α such that, if

and
for ,

then

is prime for all .[14] Wright gives the first seven decimal places of such a constant: . This value gives rise to the primes , , and . is even, and so is not prime. However, with , , , and are unchanged, while is a prime with 4932 digits.[15] This sequence of primes cannot be extended beyond without knowing more digits of . Like Mills' formula, and for the same reasons, Wright's formula cannot be used to find primes.

A function that represents all primes

Given the constant (sequence A249270 in the OEIS), for , define the sequence

(1)

where is the floor function. Then for , equals the th prime: , , , etc. [16] The initial constant given in the article is precise enough for equation (1) to generate the primes through 37, the th prime.

The exact value of that generates all primes is given by the rapidly-converging series

where is the th prime, and is the product of all primes less than . The more digits of that we know, the more primes equation (1) will generate. For example, we can use 25 terms in the series, using the 25 primes less than 100, to calculate the following more precise approximation:

This has enough digits for equation (1) to yield again the 25 primes less than 100.

As with Mills' formula and Wright's formula above, in order to generate a longer list of primes, we need to start by knowing more digits of the initial constant, , which in this case requires a longer list of primes in its calculation.

Plouffe's formulas

In 2018 Simon Plouffe conjectured a set of formulas for primes. Similarly to the formula of Mills, they are of the form

where is the function rounding to the nearest integer. For example, with and , this gives 113, 367, 1607, 10177, 102217... (sequence A323176 in the OEIS). Using and with a certain number between 0 and one half, Plouffe found that he could generate a sequence of 50 probable primes (with high probability of being prime). Presumably there exists an ε such that this formula will give an infinite sequence of actual prime numbers. The number of digits starts at 501 and increases by about 1% each time.[17][18]

Prime formulas and polynomial functions

It is known that no non-constant polynomial function P(n) with integer coefficients exists that evaluates to a prime number for all integers n. The proof is as follows: suppose that such a polynomial existed. Then P(1) would evaluate to a prime p, so . But for any integer k, also, so cannot also be prime (as it would be divisible by p) unless it were p itself. But the only way for all k is if the polynomial function is constant. The same reasoning shows an even stronger result: no non-constant polynomial function P(n) exists that evaluates to a prime number for almost all integers n.

Euler first noticed (in 1772) that the quadratic polynomial

is prime for the 40 integers n = 0, 1, 2, ..., 39, with corresponding primes 41, 43, 47, 53, 61, 71, ..., 1601. The differences between the terms are 2, 4, 6, 8, 10... For n = 40, it produces a square number, 1681, which is equal to 41 × 41, the smallest composite number for this formula for n ≥ 0. If 41 divides n, it divides P(n) too. Furthermore, since P(n) can be written as n(n + 1) + 41, if 41 divides n + 1 instead, it also divides P(n). The phenomenon is related to the Ulam spiral, which is also implicitly quadratic, and the class number; this polynomial is related to the Heegner number . There are analogous polynomials for (the lucky numbers of Euler), corresponding to other Heegner numbers.

Given a positive integer S, there may be infinitely many c such that the expression n2 + n + c is always coprime to S. The integer c may be negative, in which case there is a delay before primes are produced.

It is known, based on Dirichlet's theorem on arithmetic progressions, that linear polynomial functions produce infinitely many primes as long as a and b are relatively prime (though no such function will assume prime values for all values of n). Moreover, the Green–Tao theorem says that for any k there exists a pair of a and b, with the property that is prime for any n from 0 through k − 1. However, as of 2020, the best known result of such type is for k = 27:

is prime for all n from 0 through 26.[19] It is not even known whether there exists a univariate polynomial of degree at least 2, that assumes an infinite number of values that are prime; see Bunyakovsky conjecture.

Possible formula using a recurrence relation

Another prime generator is defined by the recurrence relation

where gcd(x, y) denotes the greatest common divisor of x and y. The sequence of differences an+1an starts with 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, ... (sequence A132199 in the OEIS). Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, an) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.[20]

Note that there is a trivial program that enumerates all and only the prime numbers, as well as more efficient ones, so such recurrence relations are more a matter of curiosity than of any practical use.

See also

References

  1. ^ Mackinnon, Nick (June 1987), "Prime number formulae", The Mathematical Gazette, 71 (456): 113–114, doi:10.2307/3616496, JSTOR 3616496, S2CID 171537609.
  2. ^ Willans, C. P. (December 1964), "On formulae for the th prime number", The Mathematical Gazette, 48 (366): 413–415, doi:10.2307/3611701, JSTOR 3611701, S2CID 126149459.
  3. ^ Neill, T. B. M.; Singer, M. (October 1965), "To the Editor, The Mathematical Gazette", The Mathematical Gazette, 49 (369): 303–303, doi:10.2307/3612863, JSTOR 3612863
  4. ^ Goodstein, R. L.; Wormell, C. P. (February 1967), "Formulae For Primes", The Mathematical Gazette, 51 (375): 35–38, doi:10.2307/3613607, JSTOR 3613607
  5. ^ Wilf, Herbert S. (1982), "What is an answer?", The American Mathematical Monthly, 89 (5): 289–292, doi:10.2307/2321713, JSTOR 2321713, MR 0653502
  6. ^ Dudley, Underwood (1983), "Formulas for primes", Mathematics Magazine, 56 (1): 17–22, doi:10.2307/2690261, JSTOR 2690261, MR 0692169
  7. ^ Jones, James P.; Sato, Daihachiro; Wada, Hideo; Wiens, Douglas (1976), "Diophantine representation of the set of prime numbers", American Mathematical Monthly, 83 (6), Mathematical Association of America: 449–464, doi:10.2307/2318339, JSTOR 2318339, archived from the original on 2012-02-24.
  8. ^ Matiyasevich, Yuri V. (1999), "Formulas for Prime Numbers", in Tabachnikov, Serge (ed.), Kvant Selecta: Algebra and Analysis, vol. II, American Mathematical Society, pp. 13–24, ISBN 978-0-8218-1915-9.
  9. ^ Jones, James P. (1982), "Universal diophantine equation", Journal of Symbolic Logic, 47 (3): 549–571, doi:10.2307/2273588, JSTOR 2273588, S2CID 11148823.
  10. ^ Mills, W. H. (1947), "A prime-representing function" (PDF), Bulletin of the American Mathematical Society, 53 (6): 604, doi:10.1090/S0002-9904-1947-08849-2.
  11. ^ Caldwell, Chris K.; Cheng, Yuanyou (2005), "Determining Mills' Constant and a Note on Honaker's Problem", Journal of Integer Sequences, 8, Article 05.4.1.
  12. ^ Tóth, László (2017), "A Variation on Mills-Like Prime-Representing Functions" (PDF), Journal of Integer Sequences, 20 (17.9.8), arXiv:1801.08014.
  13. ^ Elsholtz, Christian (2020), "Unconditional Prime-Representing Functions, Following Mills", American Mathematical Monthly, 127 (7), Washington, DC: Mathematical Association of America: 639–642, arXiv:2004.01285, doi:10.1080/00029890.2020.1751560, S2CID 214795216
  14. ^ E. M. Wright (1951), "A prime-representing function", American Mathematical Monthly, 58 (9): 616–618, doi:10.2307/2306356, JSTOR 2306356
  15. ^ Baillie, Robert (5 June 2017), "Wright's Fourth Prime", arXiv:1705.09741v3 [math.NT]
  16. ^ Fridman, Dylan; Garbulsky, Juli; Glecer, Bruno; Grime, James; Tron Florentin, Massi (2019), "A Prime-Representing Constant", American Mathematical Monthly, 126 (1), Washington, DC: Mathematical Association of America: 70–73, arXiv:2010.15882, doi:10.1080/00029890.2019.1530554, S2CID 127727922
  17. ^ Steckles, Katie (January 26, 2019), "Mathematician's record-beating formula can generate 50 prime numbers", New Scientist
  18. ^ Simon Plouffe (2019), "A set of formulas for primes", arXiv:1901.01849 [math.NT] As of January 2019, the number he gives in the appendix for the 50th number generated is actually the 48th.
  19. ^ PrimeGrid's AP27 Search, Official announcement, from PrimeGrid. The AP27 is listed in "Jens Kruse Andersen's Primes in Arithmetic Progression Records page".
  20. ^ Rowland, Eric S. (2008), "A Natural Prime-Generating Recurrence", Journal of Integer Sequences, 11 (2): 08.2.8, arXiv:0710.3217, Bibcode:2008JIntS..11...28R.

Further reading

  • Regimbal, Stephen (1975), "An explicit Formula for the k-th prime number", Mathematics Magazine, 48 (4), Mathematical Association of America: 230–232, doi:10.2307/2690354, JSTOR 2690354.
  • A Venugopalan. Formula for primes, twinprimes, number of primes and number of twinprimes. Proceedings of the Indian Academy of Sciences—Mathematical Sciences, Vol. 92, No 1, September 1983, pp. 49–52 errata

Read other articles:

Voce principale: Società Sportiva Dilettantistica Calcio Città di Brindisi. Brindisi SportStagione 1974-1975 Sport calcio Squadra Brindisi Allenatore Antonio Renna (1ª-7ª) Giovanni Invernizzi (8ª-18ª) Antonio Renna (19ª-38ª) Presidente Cosimo Fanuzzi Serie B14º posto Coppa ItaliaFase a gironi Maggiori presenzeCampionato: Boccolini, Di Vincenzo (37) Miglior marcatoreCampionato: Boccolini, Marmo (8) StadioComunale 1973-1974 1975-1976 Si invita a seguire il modello di voce Questa v...

العلاقات البيروفية السورية بيرو سوريا   بيرو   سوريا تعديل مصدري - تعديل   العلاقات البيروفية السورية هي العلاقات الثنائية التي تجمع بين بيرو وسوريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بيرو سوريا المس

15.º distrito local de Baja California Distrito electoral local Cabecera distrital Playas de RosaritoEntidad Distrito electoral local • País México • Estado Baja CaliforniaDiputado María del Socorro Adame Muñoz Subdivisiones 95 seccionesMunicipios Playas de Rosarito y Ensenada[editar datos en Wikidata] El 15.º distrito electoral local de Baja California es uno de los 17 distritos electorales en los que se encuentra dividido el territorio del estado de Baja Califo...

Cláudia Celeste Información personalNacimiento 14 de julio de 1952 Río de Janeiro (Brasil) Fallecimiento 13 de mayo de 2018 (65 años)Río de Janeiro (Brasil) Nacionalidad BrasileñaInformación profesionalOcupación Actor, cantante, bailarín, participante en concursos de belleza, peluquero, activista LGBTI y activista por los derechos de las personas transgénero [editar datos en Wikidata] Cláudia Celeste (Río de Janeiro, 14 de julio de 1952 - 13 de mayo de 2018) fue una actr...

Provisorische Versorgung einer Becken- oder Oberschenkelfraktur mittels Steinmann-Nagel. Die abgebildete Vorgehensweise entspricht nicht den modernen Normen für steriles Arbeiten im OP. Die Unfallchirurgie befasst sich mit der Folge eines physischen Traumas und wird häufig auch als Traumatologie (oder Verletzungschirurgie[1]) bezeichnet. Im engeren bzw. eigentlichen Sinne ist Unfallchirurgie jedoch ein Teil der über die chirurgischen Aspekte hinausgehenden Traumatologie (auch Unfal...

Naphtali ist eine Weiterleitung auf diesen Artikel. Zum deutschen Kaufmann und späteren israelischen Finanzminister siehe Fritz Naphtali. Zwölf Stämme Israels Ruben Simeon Levi Juda Dan Naftali Gad Ascher Issachar Sebulon Josef Manasse Ephraim Benjamin Naftali (hebräisch נַפְתָּלִי naftāli) war der sechste Sohn Jakobs und der zweite mit Bilha, der Leibmagd Rahels (Gen 35,25 EU). Naftali ist einer der zwölf Stammväter Israels. Inhaltsverzeichnis 1 Name 2 Stamm 3 Stammesti...

Orquesta Ciudad de Almería (OCAL) La Orquesta Ciudad de Almería y la Coral Virgen del Mar en Vélez-BlancoInformación artísticaGénero(s) Música clásicaPeríodo de actividad 22 de diciembre de 2001WebSitio web ocal.esMiembros DirectorMichael Thomas [editar datos en Wikidata] La Orquesta Ciudad de Almería, OCAL, es la orquesta sinfónica de la ciudad española de Almería, fundada en el año 2001 y que daría su primer concierto el 22 de diciembre de dicho año. Es promov...

2018 Mandarin-language television series A Taiwanese Tale of Two CitiesPromotional posterChinese nameTraditional Chinese雙城故事TranscriptionsStandard MandarinHanyu PinyinShuāng Chéng Gùshì GenreSlice of life, Romance, DramaWritten byNancy Yiyu ChenChia Huei LinChih Chi FanLing Hui ChenYe Dan-qingYeh Tien-lunDirected byYeh Tien-lunStarringTammy ChenPeggy TsengJames WenCountry of originTaiwanOriginal languagesMandarin, EnglishNo. of seasons1No. of episodes20ProductionProducersChin...

So sánh hai phần tử toán học 52 quan hệ tương đương trên tập 5 phần tử được biểu diễn dưới ma trận logic 5 × 5 {\displaystyle 5\times 5} (các ô được tô màu biểu diễn số 1, tức là có quan hệ với nhau, ; trường màu trắng là số 0, tức là không quan hệ với nhau.) Trong toán học, quan hệ tương đương là quan hệ hai ngôi có tính phản xạ, đối xứng và bắc cầu. Mỗi quan hệ đối xứ...

For other uses, see Jowo. Jowo Rinpoche of the Jokhang temple, image taken in 1999 Jowo Shakyamuni or Jowo Rinpoche (Tibetan: ཇོ་བོ་རིན་པོ་ཆེ།, Wylie: jo bo rin po che) is a large 7th century statue of Gautama Buddha, supposed to have been made in China, but of great influence on the tradition of Tibetan art. Together with Jowo Mikyö Dorje, it is one of the most sacred statues in Tibet. Jowo Rinpoche is housed in the Jokhang chapel of the Rasa Trulnang Tsuglak...

Baia di MikkelsenIn evidenza la costa di Fallières, davanti alla quale si trova la baia di Mikkelsen.Stato Antartide TerritorioTerra di Graham RegioneCosta di Fallières Coordinate68°43′20.64″S 67°10′42.96″W / 68.7224°S 67.1786°W-68.7224; -67.1786Coordinate: 68°43′20.64″S 67°10′42.96″W / 68.7224°S 67.1786°W-68.7224; -67.1786 DimensioniLunghezza18,5 km Larghezza28,5 km Baia di Mikkelsen Modifica dati su Wikidata · Ma...

Indian stock market index This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: NIFTY Next 50 – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this template message) NSE NIFTY NEXT 50Performance of the NIFTY NEXT 50 index between 2000 and 2023Foundation24 December...

Kolkata Metro's Blue Line metro station NetajiনেতাজিKolkata Metro stationGeneral informationLocationChandi Ghosh Rd, Kudghat, Tollygunge, Kolkata, West Bengal 700041Coordinates22°28′52″N 88°20′46″E / 22.480976°N 88.346000°E / 22.480976; 88.346000Owned byMetro Railway, KolkataKolkata Metro Rail CorporationOperated byKolkata MetroLine(s)Blue LinePlatformsSide platformPlatform-1 → DakshineshwarPlatform-2 → Kavi SubhashTracks2ConstructionStructu...

River in Hertfordshire, England For other uses, see River Ash (disambiguation). AshLocationCountryUnited KingdomPhysical characteristicsSource  • locationNr. Brent Pelham, Hertfordshire • elevation115 m (377 ft) Mouth  • locationStanstead Abbotts, Hertfordshireinto River Lea • coordinates51°47′56″N 0°0′16.5″W / 51.79889°N 0.004583°W / 51.79889; -0.004583Length26 km...

Paul Blart: Mall Cop 2Poster resmiSutradara Andy Fickman Produser Todd Garner Kevin James Adam Sandler Ditulis oleh Nick Bakay Kevin James Pemeran Kevin James Raini Rodriguez Neal McDonough Shirley Knight Penata musikRupert Gregson-WilliamsSinematograferDean SemlerPenyuntingScott HillPerusahaanproduksiHappy Madison ProductionsDistributorColumbia PicturesTanggal rilis 17 April 2015 (2015-04-17) Durasi94 Menit[1]Negara Amerika Serikat Bahasa Inggris Anggaran$40 Juta[2]...

Gugus Tugas Percepatan Penanganan Corona Virus Disease 2019Informasi lembagaDibentuk13 Maret 2020 (2020-03-13)Dibubarkan20 Juli 2020 (2020-07-20)Lembaga penggantiKomite Penanganan COVID-19 dan Pemulihan Ekonomi Nasional[1]Wilayah hukumPemerintah IndonesiaKantor pusatGraha Badan Nasional Penanggulangan Bencana, Matraman, Jakarta Timur, Indonesia6°11′34″S 106°52′07″E / 6.1928°S 106.8686°E / -6.1928; 106.8686Koordinat: 6°11′34″S 106°52�...

Korea Skating UnionSportFigure skating, speed skating, short-track speed skatingJurisdictionSouth KoreaAbbreviationKSUFounded1945AffiliationInternational Skating UnionAffiliation date1947HeadquartersOlympic Park, Songpa District, SeoulPresidentYoon Hong-geunOfficial websiteskating.or.kr The Korea Skating Union (Korean: 대한빙상경기연맹; RR: Daehan Bingsang Gyeonggi Yeonmaeng) is the national governing body for the sports of figure skating, speed skating and short...

Family parental controls service This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Google Family Link – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) Google Family LinkDeveloper(s)GoogleInitial releaseMarch 2017Operating system Android iOS Included withAndroid 10 and aboveAvailable inAvailable...

Japanese weightlifter (1935–2009) Shigeo KogureKogure (center) at the 1958 Asian GamesPersonal informationBornOctober 3, 1935Tochigi Prefecture, JapanDiedOctober 13, 2009 (aged 74)Nishinomiya, JapanHeight158 cm (5 ft 2 in)Weight56 kg (123 lb)SportSportWeightlifting Medal record Representing  Japan Asian Games 1958 Tokyo -56 kg Shigeo Kogure (木暮 茂夫, October 3, 1935 – October 13, 2009) was a Japanese bantamweight weightlifter who won a gold medal at the...

Sekretariat Jenderal Ombudsman Republik IndonesiaGambaran umumDasar hukumPeraturan Presiden Republik Indonesia Nomor 20 tahun 2009Susunan organisasiSekretaris JenderalSuganda Pandapotan Pasaribu[1]Kantor pusatJln. HR Rasuna Said Kav C-19 Jakarta 12940Situs webhttp://www.ombudsman.go.id/ Sekretariat Jenderal Ombudsman Republik Indonesia (disingkat Setjen ORI) adalah Sekretariat Jenderal Ombudsman adalah perangkat pemerintah yang dalam melaksanakan tugas dan fungsinya berada di baw...