Character group

In mathematics, a character group is the group of representations of an abelian group by complex-valued functions. These functions can be thought of as one-dimensional matrix representations and so are special cases of the group characters that arise in the related context of character theory. Whenever a group is represented by matrices, the function defined by the trace of the matrices is called a character; however, these traces do not in general form a group. Some important properties of these one-dimensional characters apply to characters in general:

  • Characters are invariant on conjugacy classes.
  • The characters of irreducible representations are orthogonal.

The primary importance of the character group for finite abelian groups is in number theory, where it is used to construct Dirichlet characters. The character group of the cyclic group also appears in the theory of the discrete Fourier transform. For locally compact abelian groups, the character group (with an assumption of continuity) is central to Fourier analysis.

Preliminaries

Let be an abelian group. A function mapping to the group of non-zero complex numbers is called a character of if it is a group homomorphism—that is, if for all .

If is a character of a finite group (or more generally a torsion group) , then each function value is a root of unity, since for each there exists such that , and hence .

Each character f is a constant on conjugacy classes of G, that is, f(hgh−1) = f(g). For this reason, a character is sometimes called a class function.

A finite abelian group of order n has exactly n distinct characters. These are denoted by f1, ..., fn. The function f1 is the trivial representation, which is given by for all . It is called the principal character of G; the others are called the non-principal characters.

Definition

If G is an abelian group, then the set of characters fk forms an abelian group under pointwise multiplication. That is, the product of characters and is defined by for all . This group is the character group of G and is sometimes denoted as . The identity element of is the principal character f1, and the inverse of a character fk is its reciprocal 1/fk. If is finite of order n, then is also of order n. In this case, since for all , the inverse of a character is equal to the complex conjugate.

Alternative definition

There is another definition of character group[1]pg 29 which uses as the target instead of just . This is useful when studying complex tori because the character group of the lattice in a complex torus is canonically isomorphic to the dual torus via the Appell–Humbert theorem. That is,

We can express explicit elements in the character group as follows: recall that elements in can be expressed as

for . If we consider the lattice as a subgroup of the underlying real vector space of , then a homomorphism

can be factored as a map

This follows from elementary properties of homomorphisms. Note that

giving us the desired factorization. As the group

we have the isomorphism of the character group, as a group, with the group of homomorphisms of to . Since for any abelian group , we have

after composing with the complex exponential, we find that

which is the expected result.

Examples

Finitely generated abelian groups

Since every finitely generated abelian group is isomorphic to

the character group can be easily computed in all finitely generated cases. From universal properties, and the isomorphism between finite products and coproducts, we have the character groups of is isomorphic to

for the first case, this is isomorphic to , the second is computed by looking at the maps which send the generator to the various powers of the -th roots of unity .

Orthogonality of characters

Consider the matrix A = A(G) whose matrix elements are where is the kth element of G.

The sum of the entries in the jth row of A is given by

if , and
.

The sum of the entries in the kth column of A is given by

if , and
.

Let denote the conjugate transpose of A. Then

.

This implies the desired orthogonality relationship for the characters: i.e.,

,

where is the Kronecker delta and is the complex conjugate of .

See also

References

  1. ^ Birkenhake, Christina; H. Lange (2004). Complex Abelian varieties (2nd, augmented ed.). Berlin: Springer. ISBN 3-540-20488-1. OCLC 54475368.

Read other articles:

2015 single by Lil JonGet LooseSingle by Lil JonReleasedOctober 2, 2015 (2015-10-02)Recorded2015Genre Electro-hop Length2:00Label Little Jonathan Dim Mak Records Songwriter(s) Lil Jon Producer(s)Lil JonLil Jon singles chronology My Cutie Pie (2015) Get Loose (2015) Live the Night (2016) Get Loose is a song written, produced, and performed by American hip hop recording artist Lil Jon. It was released as a single on October 2, 2015 through Dim Mak Records. The song rose to pr...

 

Kampen kotaplace with town rights and privileges (en)cadastral populated place in the Netherlands (en)Hanseatic city (en) Kampen (nl) Tempat categoria:Articles mancats de coordenades Negara berdaulatKerajaan BelandaCountry of the Kingdom of the Netherlands (en)BelandaProvinsi di BelandaOverijsselMunisipalitas di BelandaKampen (en) Ibu kota dariKampen (en) NegaraBelanda PendudukTotal52.398  (2016 )GeografiLuas wilayah161,79 km² [convert: unit tak dikenal]Dekat dengan perairanSungai ...

 

Akşehir MuseumAkşehir MüzesiAkşehir Museum from the northAkşehir MuseumEstablished2007; 17 years ago (2007)Coordinates38°21′24″N 31°24′40″E / 38.35667°N 31.41111°E / 38.35667; 31.41111TypeEthnography, Archaeology,CollectionsNeolithic, Chalcolithic, Bronze , Iron , Classic , Roman and , Byzantine , Ottoman EmpireOwnerMinistry of Culture and Tourism Akşehir Museum, a.k.a. Nasrettin Hoca Archaeology and Ethnography Museum (Turkish: Nasr...

Polish politician (born 1949) Eugeniusz CzykwinMember of the SejmIn office25 November 1991 – 31 May 1993Constituency25 – BiałystokIn office19 October 2001 – 11 November 2015In office12 November 2019 – 12 November 2023Constituency24 – Białystok Personal detailsBorn1949NationalityPolishPolitical partyDemocratic Left Alliance Eugeniusz Czykwin (Belarusian: Яўген Чыквін, born 12 September 1949 in Orla) is a Polish politician. He was elected to Sej...

 

Bagian dari seriIlmu Pengetahuan Formal Logika Matematika Logika matematika Statistika matematika Ilmu komputer teoretis Teori permainan Teori keputusan Ilmu aktuaria Teori informasi Teori sistem FisikalFisika Fisika klasik Fisika modern Fisika terapan Fisika komputasi Fisika atom Fisika nuklir Fisika partikel Fisika eksperimental Fisika teori Fisika benda terkondensasi Mekanika Mekanika klasik Mekanika kuantum Mekanika kontinuum Rheologi Mekanika benda padat Mekanika fluida Fisika plasma Ter...

 

Lynette FrommeLynette Fromme en 1965.BiographieNaissance 22 octobre 1948 (75 ans)Santa MonicaNom de naissance Lynette Alice FrommePseudonyme Squeaky FrommeNationalité américaineDomiciles Marcy (depuis 2009), Venice, Spahn Ranch, Sacramento, Stockton, Barker Ranch (en)Formation El Camino College (en)Redondo Union High School (en)Westchester High School (en)Activité CriminelleAutres informationsMembre de Famille de Manson (en)Condamnée pour Tentative d'assassinat (1975)Lieux de détent...

Le Suore Francescane Elisabettine, dette Bigie, sono un istituto religioso femminile di diritto pontificio: i membri di questa congregazione pospongono al loro nome la sigla S.F.E.B..[1] Indice 1 Storia 2 Attività e diffusione 3 Note 4 Bibliografia 5 Collegamenti esterni Storia La congregazione venne fondata nel 1864 dal frate francescano Ludovico da Casoria (1814-1885) per avere delle religiose che collaborassero alle opere caritatevoli da lui fondate.[2] Già nel 1862 si er...

 

Questa voce sull'argomento calciatori tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Fabian Klos Nazionalità  Germania Altezza 194 cm Calcio Ruolo Attaccante Squadra  Arminia Bielefeld Carriera Squadre di club1 2007-2009 MTV Gifhorn58 (49)2009-2011 Wolfsburg II65 (22)2011- Arminia Bielefeld294 (132)[1] 1 I due numeri indicano le presenze e le reti segnate, per le ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pulau Buru – berita · surat kabar · buku · cendekiawan · JSTOR Untuk kegunaan lain, lihat Buru. Pulau BuruGeografiLokasiAsia TenggaraKoordinat3°24′S 126°40′E / 3.400°S 126.667°E&#...

2016 single by Future featuring DrakeUsed to ThisSingle by Future featuring Drakefrom the album Future ReleasedNovember 4, 2016 (2016-11-04)GenreHip hopLength3:00LabelFreebandzEpicSongwriter(s)Nayvadius WilburnAubrey GrahamXavier DotsonProducer(s)ZaytovenFuture singles chronology Rivals (2016) Used to This (2016) Everyday (2017) Drake singles chronology Two Birds, One Stone(2016) Used to This(2016) Both(2017) Used to This is a song by American rapper Future. It was rele...

 

Wes CravenLahirWesley Earl CravenMeninggal30 Agustus 2015(2015-08-30) (umur 76)Los Angeles, California, Amerika Serikat[1]Pekerjaansutradara, penulis skenario, dan produserTahun aktif1971 - 2015[2]Suami/istriBonnie Broecker(1964-1969) Mimi Craven (1984-1987)Iya LabunkaSitus webwww.wescraven.com Wes Craven terlahir dengan nama Wesley Earl Craven (2 Agustus 1939 – 30 Agustus 2015) adalah seorang penulis dan sutradara Amerika. Ia dikenal karena banyak m...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Senapan Carcano 6,5 mm milik Lee Harvey Oswald Senapan pembunuhan John F. Kennedy adalah Senapan Carcano Italia 6.5×52mm M91/38.[1] Pada tanggal 22 November 1963, Presiden Amerika Serikat ke-35, John F. Kennedy, dibunuh saat berkendara dalam iring-iringan mobil kepresidenan di Dealey Plaza, Dallas, Texas. Kennedy berada di dalam mobil bersama istrinya, Jacqueline, Gubernur Texas John Connally, dan istri Connally, Nellie, ketika ia ditembak di dekat Texas School Book Depository oleh s...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

2007 studio album by Annie LennoxSongs of Mass DestructionStudio album by Annie LennoxReleased1 October 2007RecordedSeptember 2006 – February 2007Studio The High Window (Hollywood) Westlake (West Hollywood) Genre Pop rock funk rock blues rock soul Length46:51Label RCA 19 ProducerGlen BallardAnnie Lennox chronology Bare(2003) Songs of Mass Destruction(2007) The Annie Lennox Collection(2009) Singles from Songs of Mass Destruction Dark RoadReleased: 24 September 2007 SingReleased: 1 D...

Royal Corps of Somali Colonial TroopsItalian soldiers in Africa.Active5 April 1908 – 5 May 1936Country Italian SomalilandAllegiance Kingdom of ItalyBranchRoyal Corps of Colonial TroopsTypeRoyal ArmyHeadquartersMogadishuEngagementsSomaliland CampaignItalo-Turkish WarSecond Italo-Ethiopian WarItalian conquest of British SomalilandEast African CampaignDecorations1 Gold Medal of Military ValourMilitary unit The Royal Corps of Somali Colonial Troops (Italian: Regio corpo truppe coloniali de...

 

Voce principale: Storia della Calabria. Mappa dell'Italia all'inizio del IX secolo. Stemma dei duchi di Calabria, usato al tempo in cui era la casa d'Aragona, a governare il regno di Napoli Il Ducato di Calabria (successivamente Thema di Calabria) fu un possedimento romeo in Italia, che comprendeva inizialmente il Salento e la Calabria, e successivamente solo la parte meridionale di quest'ultima. Dal 1061 divenne un possedimento normanno, retto dal Duca di Calabria. Indice 1 Premesse e nasci...

 

1991 single by LL Cool J Mama Said Knock You OutSingle by LL Cool Jfrom the album Mama Said Knock You Out ReleasedFebruary 26, 1991 (1991-02-26)GenreGolden age hip hopLength4:50 (album version)LabelDef JamColumbiaSongwriter(s) James Todd Smith Marlon Williams Producer(s)Marley MarlLL Cool J singles chronology Around the Way Girl (1990) Mama Said Knock You Out (1991) Rampage (1991) Music videoMama Said Knock You Out on YouTube Mama Said Knock You Out is a song by American rapper...

2021 studio album by Cadence WeaponParallel WorldStudio album by Cadence WeaponReleasedApril 30, 2021StudioDream House StudiosGenreCanadian hip hopLength26:24ProducerJacques Greene, Jimmy Edgar, Martyn Bootyspoon, Casey MQ, Korea Town Acid, Strict Face, Little Snake, DNNY PHNTM, AudioOperaCadence Weapon chronology Cadence Weapon(2018) Parallel World(2021) Parallel World is the fifth studio album by Cadence Weapon, nee Roland Pemberton, released April 30, 2021.[1] The album was...

 

Fictional character in the DC Comics pantheon This article is about the fictional character. For the comic book, see Superboy (comic book). For other uses, see Superboy (disambiguation). SuperboyCover to Superboy vol. 4 #61 (1999) by Tom Grummett, showing Kon-El (in jacket), Kal-El (beneath Kon's right arm), and other Superboys from the DC MultiversePublisherDC ComicsFirst appearanceMore Fun Comics #101 (January–February 1945)Created byJerry Siegel (writer)Joe Shuster (art)Characters L...