In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots.[1] They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta").
Basic formulas
Any general polynomial of degreen
(with the coefficients being real or complex numbers and an ≠ 0) has n (not necessarily distinct) complex roots r1, r2, ..., rn by the fundamental theorem of algebra. Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots r1, r2, ..., rn as follows:
(*)
Vieta's formulas can equivalently be written as
for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once).
Vieta's formulas are frequently used with polynomials with coefficients in any integral domainR. Then, the quotients belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension. Typically, R is the ring of the integers, the field of fractions is the field of the rational numbers and the algebraically closed field is the field of the complex numbers.
Vieta's formulas are then useful because they provide relations between the roots without having to compute them.
For polynomials over a commutative ring that is not an integral domain, Vieta's formulas are only valid when is not a zero-divisor and factors as . For example, in the ring of the integers modulo 8, the quadratic polynomial has four roots: 1, 3, 5, and 7. Vieta's formulas are not true if, say, and , because . However, does factor as and also as , and Vieta's formulas hold if we set either and or and .
Example
Vieta's formulas applied to quadratic and cubic polynomials:
Vieta's formulas can be proved by expanding the equality
(which is true since are all the roots of this polynomial), multiplying the factors on the right-hand side, and identifying the coefficients of each power of
Formally, if one expands the terms are precisely where is either 0 or 1, accordingly as whether is included in the product or not, and k is the number of that are included, so the total number of factors in the product is n (counting with multiplicity k) – as there are n binary choices (include or x), there are terms – geometrically, these can be understood as the vertices of a hypercube. Grouping these terms by degree yields the elementary symmetric polynomials in – for xk, all distinct k-fold products of
As an example, consider the quadratic
Comparing identical powers of , we find , and , with which we can for example identify and , which are Vieta's formula's for .
Proof by mathematical induction
Vieta's formulas can also be proven by induction as shown below.
Inductive hypothesis:
Let be polynomial of degree , with complex roots and complex coefficients where . Then the inductive hypothesis is that
Base case,(quadratic):
Let be coefficients of the quadratic and be the constant term. Similarly, let be the roots of the quadratic:Expand the right side using distributive property:Collect like terms:Apply distributive property again:The inductive hypothesis has now been proven true for .
Induction step:
Assuming the inductive hypothesis holds true for all , it must be true for all .By the factor theorem, can be factored out of leaving a 0 remainder. Note that the roots of the polynomial in the square brackets are :Factor out , the leading coefficient , from the polynomial in the square brackets:For simplicity sake, allow the coefficients and constant of polynomial be denoted as :Using the inductive hypothesis, the polynomial in the square brackets can be rewritten as:Using distributive property:After expanding and collecting like terms:The inductive hypothesis holds true for , therefore it must be true
Conclusion:By dividing both sides by , it proves the Vieta's formulas true.
History
As reflected in the name, the formulas were discovered by the 16th-century French mathematician François Viète, for the case of positive roots.
In the opinion of the 18th-century British mathematician Charles Hutton, as quoted by Funkhouser,[2] the general principle (not restricted to positive real roots) was first understood by the 17th-century French mathematician Albert Girard:
...[Girard was] the first person who understood the general doctrine of the formation of the coefficients of the powers from the sum of the roots and their products. He was the first who discovered the rules for summing the powers of the roots of any equation.
Funkhouser, H. Gray (1930), "A short account of the history of symmetric functions of roots of equations", American Mathematical Monthly, 37 (7), Mathematical Association of America: 357–365, doi:10.2307/2299273, JSTOR2299273
Djukić, Dušan; et al. (2006), The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959–2004, Springer, New York, NY, ISBN0-387-24299-6