Empty product

In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.[1][2][3][4] When numbers are implied, the empty product becomes one.

The term empty product is most often used in the above sense when discussing arithmetic operations. However, the term is sometimes employed when discussing set-theoretic intersections, categorical products, and products in computer programming.

Nullary arithmetic product

Definition

Let a1, a2, a3, ... be a sequence of numbers, and let

be the product of the first m elements of the sequence. Then

for all m = 1, 2, ... provided that we use the convention . In other words, a "product" with no factors at all evaluates to 1. Allowing a "product" with zero factors reduces the number of cases to be considered in many mathematical formulas. Such a "product" is a natural starting point in induction proofs, as well as in algorithms. For these reasons, the "empty product is one" convention is common practice in mathematics and computer programming.

Relevance of defining empty products

The notion of an empty product is useful for the same reason that the number zero and the empty set are useful: while they seem to represent quite uninteresting notions, their existence allows for a much shorter mathematical presentation of many subjects.

For example, the empty products 0! = 1 (the factorial of zero) and x0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M0 is the n × n identity matrix, reflecting the fact that applying a linear map zero times has the same effect as applying the identity map.

As another example, the fundamental theorem of arithmetic says that every positive integer greater than 1 can be written uniquely as a product of primes. However, if we do not allow products with only 0 or 1 factors, then the theorem (and its proof) become longer.[5][6]

More examples of the use of the empty product in mathematics may be found in the binomial theorem (which assumes and implies that x0 = 1 for all x), Stirling number, König's theorem, binomial type, binomial series, difference operator and Pochhammer symbol.

Logarithms and exponentials

Since logarithms map products to sums:

they map an empty product to an empty sum.

Conversely, the exponential function maps sums into products:

and maps an empty sum to an empty product.

Nullary Cartesian product

Consider the general definition of the Cartesian product:

If I is empty, the only such g is the empty function , which is the unique subset of that is a function , namely the empty subset (the only subset that has):

Thus, the cardinality of the Cartesian product of no sets is 1.

Under the perhaps more familiar n-tuple interpretation,

that is, the singleton set containing the empty tuple. Note that in both representations the empty product has cardinality 1 – the number of all ways to produce 0 outputs from 0 inputs is 1.

Nullary categorical product

In any category, the product of an empty family is a terminal object of that category. This can be demonstrated by using the limit definition of the product. An n-fold categorical product can be defined as the limit with respect to a diagram given by the discrete category with n objects. An empty product is then given by the limit with respect to the empty category, which is the terminal object of the category if it exists. This definition specializes to give results as above. For example, in the category of sets the categorical product is the usual Cartesian product, and the terminal object is a singleton set. In the category of groups the categorical product is the Cartesian product of groups, and the terminal object is a trivial group with one element. To obtain the usual arithmetic definition of the empty product we must take the decategorification of the empty product in the category of finite sets.

Dually, the coproduct of an empty family is an initial object. Nullary categorical products or coproducts may not exist in a given category; e.g. in the category of fields, neither exists.

In logic

Classical logic defines the operation of conjunction, which is generalized to universal quantification in predicate calculus, and is widely known as logical multiplication because we intuitively identify true with 1 and false with 0 and our conjunction behaves as ordinary multiplier. Multipliers can have arbitrary number of inputs. In case of 0 inputs, we have empty conjunction, which is identically equal to true.

This is related to another concept in logic, vacuous truth, which tells us that empty set of objects can have any property. It can be explained the way that the conjunction (as part of logic in general) deals with values less or equal 1. This means that the longer the conjunction, the higher the probability of ending up with 0. Conjunction merely checks the propositions and returns 0 (or false) as soon as one of propositions evaluates to false. Reducing the number of conjoined propositions increases the chance to pass the check and stay with 1. Particularly, if there are 0 tests or members to check, none can fail, so by default we must always succeed regardless of which propositions or member properties were to be tested.

In computer programming

Many programming languages, such as Python, allow the direct expression of lists of numbers, and even functions that allow an arbitrary number of parameters. If such a language has a function that returns the product of all the numbers in a list, it usually works like this:

>>> math.prod([2, 3, 5])
30
>>> math.prod([2, 3])
6
>>> math.prod([2])
2
>>> math.prod([])
1

(Please note: prod is not available in the math module prior to version 3.8.)

This convention helps avoid having to code special cases like "if length of list is 1" or "if length of list is zero."

Multiplication is an infix operator and therefore a binary operator, complicating the notation of an empty product. Some programming languages handle this by implementing variadic functions. For example, the fully parenthesized prefix notation of Lisp languages gives rise to a natural notation for nullary functions:

(* 2 2 2)   ; evaluates to 8
(* 2 2)     ; evaluates to 4
(* 2)       ; evaluates to 2
(*)         ; evaluates to 1

See also

References

  1. ^ Jaroslav Nešetřil, Jiří Matoušek (1998). Invitation to Discrete Mathematics. Oxford University Press. p. 12. ISBN 0-19-850207-9.
  2. ^ A.E. Ingham and R C Vaughan (1990). The Distribution of Prime Numbers. Cambridge University Press. p. 1. ISBN 0-521-39789-8.
  3. ^ Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, p. 9, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
  4. ^ David M. Bloom (1979). Linear Algebra and Geometry. CUP Archive. pp. 45. ISBN 0521293243.
  5. ^ Edsger Wybe Dijkstra (1990-03-04). "How Computing Science created a new mathematical style". EWD. Retrieved 2010-01-20. Hardy and Wright: 'Every positive integer, except 1, is a product of primes', Harold M. Stark: 'If n is an integer greater than 1, then either n is prime or n is a finite product of primes'. These examples — which I owe to A. J. M. van Gasteren — both reject the empty product, the last one also rejects the product with a single factor.
  6. ^ Edsger Wybe Dijkstra (1986-11-14). "The nature of my research and why I do it". EWD. Retrieved 2024-03-22. But also 0 is certainly finite and by defining the product of 0 factors — how else? — to be equal to 1 we can do away with the exception: 'If n is a positive integer, then n is a finite product of primes.'

Read other articles:

Le pubblicazioni scientifiche vengono pubblicate nelle riviste scientifiche, nei testi o trattati scientifici e nelle monografie scientifiche di settore: ogni edizione di tali pubblicazioni contiene un certo numero di articoli scientifici e di riferimenti bibliografici ad altri articoli scientifici. Nell'editoria accademica una pubblicazione scientifica o articolo scientifico (in inglese scientific paper[1]) è uno scritto redatto in modo oggettivo, ovvero evidenziando in maniera...

 

Freddy BudimanLahir(1977-07-18)18 Juli 1977Surabaya, Jawa TimurMeninggal29 Juli 2016(2016-07-29) (umur 39)Cilacap, Jawa Tengah Freddy Budiman (18 Juli 1977 – 29 Juli 2016) adalah seorang pengedar narkoba yang akhirnya tertangkap. Ia adik dari Eko Subagyo. Freddy Budiman juga menjadi terkenal akibat perlakuan istimewa dengan mendapat ruangan untuk berhubungan seksual, berdasarkan pengakuan kekasihnya sebelum ia dieksekusi. Ia juga dengan mudah mengembangkan jaringan penge...

 

Peta Kabupaten Mamuju Tengah di Sulawesi Barat Berikut adalah daftar kecamatan dan kelurahan di Kabupaten Mamuju Tengah, Provinsi Sulawesi Barat, Indonesia. Kabupaten Mamuju Tengah terdiri dari 5 kecamatan dan 54 desa. Pada tahun 2017, jumlah penduduknya mencapai 142.913 jiwa dengan luas wilayah 3.014,37 km² dan sebaran penduduk 47 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kabupaten Mamuju Tengah, adalah sebagai berikut: Kode Kemendagri Kecamatan Jumlah Desa Daftar D...

Fort McMurray Ort Vy över Fort McMurray Land  Kanada Provins Alberta Höjdläge 258 m ö.h. Koordinater 56°43′36″N 111°22′52″V / 56.72676°N 111.38103°V / 56.72676; -111.38103 Folkmängd 61 374 (2011)[1] Tidszon MST (UTC-7)  - sommartid MDT (UTC-6) Municipality code 0116 Geonames 5955895 Fort McMurray är en ort vid Athabascafloden i de norra delarna av provinsen Alberta i Kanada, som från 1980 och fram till den ...

 

Bae Soo-binBae Soo-bin pada Desember 2018LahirYoon Tae WookPekerjaanAktorTahun aktif2004—sekarang Nama KoreaHangul윤태욱 Hanja尹泰旭 Alih AksaraYun Tae-ukMcCune–ReischauerYun T'aeukNama panggungHangul배수빈 Hanja裴秀彬 Alih AksaraBae Su-binMcCune–ReischauerPae Subin Bae Soo-bin (lahir Yoon Tae-wook lahir 9 Desember 1976) adalah pemeran Korea Selatan.[1][2][3] Ia paling dikenal untuk perannya dalam drama televisi Brilliant Legacy, Temptation of a...

 

สตูล Satun Luas:2,479.0 km² Jumlah penduduk247,875 (tahun 2000) Kepadatan:100 inh./km² Satun (Bahasa Thailand สตูล) merupakan salah satu provinsi (changwat) di Thailand Selatan. Provinsi-provinsi yang berdekatan (dari arah utara searah jarum jam) adalah Trang, Phattalung dan Songkhla. Di bagian selatan, Satun berbatasan dengan Malaysia. Provinsi ini beribu kota di Satun. Geografi Satun terletak di Semenanjung Malaysia dan berpantai dengan Laut Andaman. Taman laut Ko Tarutao...

Kushan emperor from 230 to 247 Kanishka IIKushan emperorCoin with a depiction of Kanishka II.Reign200–222 CEPredecessorVasudeva ISuccessorVasishka Kushan emperors30 CE–350 CE Heraios1–30 CEKujula Kadphises50–90 CEVima Takto90–113 CEVima Kadphises113–127 CEKanishka I127–151 CEHuvishka151–190 CEVasudeva I190–230 CEKanishka II230–247 CEVāsishka247–267 CEKanishka III267–270 CEVasudeva II270–300 CEMahi300–305 CEShaka305–335 CEKipunada335–350 CE vte Kanishka II (Bra...

 

American opera singer (1871–1951) Olive Fremstad holding the head of John the Baptist in the Metropolitan Opera's 1907 production of Salome by Richard Strauss Olive Fremstad (14 March 1871 – 21 April 1951) was the stage name of Anna Olivia Rundquist, a celebrated Swedish-American dramatic soprano who sang in both the mezzo-soprano and soprano ranges.[1] Background Born in Stockholm, she received her early education and musical training in Christiania, Norway. When she was 12 years...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Sadako vs. KayakoPosterNama lain貞子 vs. 伽椰子SutradaraKōji ShiraishiDitulis olehTakashi Shimizu, Kôji SuzukiBerdasarkanTrilogi Ring dan Ju-On oleh Koji Suzuki dan Takashi ShimizuPemeranMizuki YamamotoTina TamashiroPerusahaanproduksiKado...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

Radio station in Sweet Valley, PennsylvaniaWRGNSweet Valley, PennsylvaniaBroadcast areaNortheastern PennsylvaniaFrequency88.1 MHzBrandingThe Good News NetworkProgrammingFormatChristian RadioOwnershipOwnerGood News for LifeSister stationsWIVHHistoryFirst air dateOctober 15, 1984[1]Technical informationFacility ID24681ClassAERP500 wattsHAAT92 meters (302 ft)Transmitter coordinates41°17′54″N 76°07′28″W / 41.29833°N 76.12444°W / 41.29833; -76.12444...

 

مقاطعة رومانيةمعلومات عامةصنف فرعي من administrative territorial entity of ancient Rome (en) تبعية جزء من روما القديمة البداية 241 ق.م الاسم المختصر province (بالإنجليزية) provincia (بالإنترلنغوا) provincia (باللاتينية) البلد روما القديمة الاختصاص روما القديمة لديه جزء أو أجزاء مصر (30 ق.م) تعديل - تعديل مصدري - تعد...

Largest city in Texas, United States This article is about the city in the U.S. state of Texas. For other uses, see Houston (disambiguation). Not to be confused with Houston County, Texas; Heuston; or Euston. City in Texas, United StatesHoustonCityDowntown HoustonTexas Medical CenterSam Houston MonumentUptown HoustonJohnson Space CenterMuseum of Fine Arts FlagSealNickname(s): Space City (official), more ...Interactive map of HoustonHoustonLocation in TexasShow map of TexasHoustonLoc...

 

ماتياس بيريرا لاج (بالبرتغالية: Mathias Pereira Lage)‏    معلومات شخصية الميلاد 30 نوفمبر 1996 (28 سنة)  كليرمون فيران  الطول 1.80 م (5 قدم 11 بوصة) مركز اللعب وسط الجنسية فرنسا البرتغال  معلومات النادي النادي الحالي بريست الرقم 29 المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2015–...

 

1991 video gameConquests of the Longbow:The Legend of Robin HoodDeveloper(s)Sierra On-LinePublisher(s)Sierra On-LineDirector(s)Christy MarxBill Davis (creative)Producer(s)Guruka Singh-KhalsaDesigner(s)Christy MarxProgrammer(s)Richard AronsonArtist(s)Kenn NishiuyeComposer(s)Mark SeibertPlatform(s)DOS, AmigaRelease1991 (DOS)1992 (Amiga)Genre(s)AdventureMode(s)Single-player Conquests of the Longbow: The Legend of Robin Hood is a graphic adventure game designed by Christy Marx and published by S...

American painter Abigail May Alcott NierikerPortrait of May Alcott Nieriker by Rose Peckman (detail)BornAbigail May Alcott(1840-07-26)July 26, 1840Concord, Massachusetts, U.S.DiedDecember 29, 1879(1879-12-29) (aged 39)Paris, FranceResting placeMontrouge Cemetery, FranceEducationSchool of the Museum of Fine Arts in Boston, William Morris Hunt, William Rimmer, Krug, Vautier and MüllerKnown forPaintingSpouse Ernest Nieriker ​(m. 1878)​ChildrenLouisa May (N...

 

For the road in York, see Museum Street (York). The corner of Great Russell Street and Museum Street. Looking north along Museum Street, towards New Oxford Street, with the steeple of St George's Church, Bloomsbury in the background. Museum Street is a street in the Bloomsbury area of the London Borough of Camden, England. To the north is the British Museum, hence its current name. The street is populated by cafes and bookshops to appeal to the international museum-going public.[1]&#...

 

Untuk orang lain dengan nama yang sama, lihat Michael Leavitt. Mike Leavitt Menteri Kesehatan dan Pelayanan Kemanusiaan Amerika Serikat ke-20Masa jabatan26 Januari 2005 – 20 Januari 2009PresidenGeorge W. BushPendahuluTommy ThompsonPenggantiKathleen SebeliusAdministrator Badan Perlindungan Lingkungan Hidup ke-10Masa jabatan6 November 2003 – 26 Januari 2005PresidenGeorge W. BushPendahuluChristine T. WhitmanPenggantiStephen L. JohnsonKetua National Governors AssociationMasa...

Ein Riesenmammutbaum: der General Grant Tree in Kalifornien. Pflanzenwachstum ist die Zunahme der Größe einer Pflanze. Beeinflussende Faktoren sind beispielsweise Licht, Temperatur, Feuchtigkeit, mechanische Störungen (z. B. Wind, Regen, Berührungen) und Schall-Vibrationen.[1] Begrenzende Faktoren sind vor allem die klimatischen Bedingungen – Jahresgang der Luft- und/oder Bodentemperaturen sowie Niederschlagsmengen- und Verteilung –, deren Kombination die individuelle Wachstum...

 

Extreme or radical form of Islam Not to be confused with Islamic fundamentalism or Jihadism. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (September 2016) (Learn how and when to remove this mess...