Nilpotent matrix

In linear algebra, a nilpotent matrix is a square matrix N such that

for some positive integer . The smallest such is called the index of ,[1] sometimes the degree of .

More generally, a nilpotent transformation is a linear transformation of a vector space such that for some positive integer (and thus, for all ).[2][3][4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.

Examples

Example 1

The matrix

is nilpotent with index 2, since .

Example 2

More generally, any -dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index [citation needed]. For example, the matrix

is nilpotent, with

The index of is therefore 4.

Example 3

Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,

although the matrix has no zero entries.

Example 4

Additionally, any matrices of the form

such as

or

square to zero.

Example 5

Perhaps some of the most striking examples of nilpotent matrices are square matrices of the form:

The first few of which are:

These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[5]

Example 6

Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.

Characterization

For an square matrix with real (or complex) entries, the following are equivalent:

  • is nilpotent.
  • The characteristic polynomial for is .
  • The minimal polynomial for is for some positive integer .
  • The only complex eigenvalue for is 0.

The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)

This theorem has several consequences, including:

  • The index of an nilpotent matrix is always less than or equal to . For example, every nilpotent matrix squares to zero.
  • The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible.
  • The only nilpotent diagonalizable matrix is the zero matrix.

See also: Jordan–Chevalley decomposition#Nilpotency criterion.

Classification

Consider the (upper) shift matrix:

This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:

[6]

This matrix is nilpotent with degree , and is the canonical nilpotent matrix.

Specifically, if is any nilpotent matrix, then is similar to a block diagonal matrix of the form

where each of the blocks is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.[7]

For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix

That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1b2 such that Nb1 = 0 and Nb2 = b1.

This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

Flag of subspaces

A nilpotent transformation on naturally determines a flag of subspaces

and a signature

The signature characterizes up to an invertible linear transformation. Furthermore, it satisfies the inequalities

Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.

Additional properties

  • If is nilpotent of index , then and are invertible, where is the identity matrix. The inverses are given by
  • If is nilpotent, then

    Conversely, if is a matrix and

    for all values of , then is nilpotent. In fact, since is a polynomial of degree , it suffices to have this hold for distinct values of .
  • Every singular matrix can be written as a product of nilpotent matrices.[8]
  • A nilpotent matrix is a special case of a convergent matrix.

Generalizations

A linear operator is locally nilpotent if for every vector , there exists a such that

For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.

Notes

  1. ^ Herstein (1975, p. 294)
  2. ^ Beauregard & Fraleigh (1973, p. 312)
  3. ^ Herstein (1975, p. 268)
  4. ^ Nering (1970, p. 274)
  5. ^ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF). idmercer.com. self-published; personal credentials: PhD Mathematics, Simon Fraser University. Retrieved 5 April 2023.
  6. ^ Beauregard & Fraleigh (1973, p. 312)
  7. ^ Beauregard & Fraleigh (1973, pp. 312, 313)
  8. ^ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3

References

Read other articles:

American interior decorator, author, and actress Elsie de WolfeElsie de Wolfe, 1914BornElla Anderson de WolfeDecember 20, c. 1859New York City, U.S.DiedJuly 12, 1950(1950-07-12) (aged 90)Versailles, FranceOccupationsActressinterior decoratorauthorTitleLady MendlSpouse Sir Charles Mendl ​(m. 1926)​ Elsie de Wolfe, Lady Mendl (née Ella Anderson de Wolfe; December 20, c. 1859[1] – July 12, 1950[2]) was an American actress who became a very pro...

 

Pour les articles homonymes, voir Côme (homonymie). Côme Como Armoiries Drapeau Vue d'ensemble de la ville. Administration Pays Italie Région Lombardie  Province Côme  Maire Mandat Alessandro Rapinese 2022- Code postal 22100 Code ISTAT 013075 Code cadastral C933 Préfixe tel. 031 Démographie Gentilé Comaschi (en français, Comasques) Population 83 184 hab. (1er janvier 2023[1]) Densité 2 241 hab./km2 Géographie Coordonnées 45° 49′ 00″...

 

2px solid red; error:colour</ includeonly> 2px solid red; error:colour</ includeonly> colspan=2 | Lokiarchaeota colspan=2 | Klasifikasi ilmiah Domain: Archaea Kerajaan: Proteoarchaeota Superfilum: Asgard Filum: LokiarchaeotaSpang et al. 2015 Kelas: Lokiarchaeia Ordo: Lokiarchaeales Famili: Lokiarchaeaceae colspan=2 | Spesies tipe Candidatus Prometheoarchaeum syntrophicumImachi et al. 2020 colspan=2 | Genus Candidatus Lokiarchaeum Spang et al. 2015 Candidatus Prometheoarchaeum Ima...

Voce principale: Unione Sportiva Sanremese Calcio 1904. Unione Sportiva SanremeseStagione 1950-1951Sport calcio Squadra Sanremese Allenatore Aldo Biffi Presidente Antonio Carbone Serie C2º posto nel girone A. 1949-1950 1951-1952 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Unione Sportiva Sanremese nelle competizioni ufficiali della stagione 1950-1951. Rosa N. Ruolo Calciatore A E. Balconi P Piero Brusca A Tito Celani C Mario Codevilla A Fo...

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

 

2019 Indian general election ← 2014 11 April – 19 May 2019[a] 2024 → ← outgoing memberselected members →543 of the 545 seats in the Lok Sabha[b]272 seats needed for a majorityOpinion pollsRegistered911,950,734Turnout67.40% ( 0.96pp)   First party Second party   Leader Narendra Modi Rahul Gandhi Party BJP INC Alliance NDA UPA Last election 31.00%, 282 seats 19.31%, 44 seats Seats won 303 52 Seat change...

City in MissouriWarrensburg, MissouriCityCity of WarrensburgJohnson County Courthouse FlagNickname: The BurgLocation of Warrensburg, MissouriWarrensburg, MissouriCoordinates: 38°45′47″N 93°44′6″W / 38.76306°N 93.73500°W / 38.76306; -93.73500Country United StatesState MissouriCountyJohnsonFounded1835Incorporated1837Government • MayorJim KushnerArea[1] • Total9.47 sq mi (24.53 km2) • L...

 

A medical professional demonstrates how to offer oral medication to a dummy. A medical professional injects medication into a gastric tube. Administering medication rectally Enteral administration is food or drug administration via the human gastrointestinal tract. This contrasts with parenteral nutrition or drug administration (Greek para, besides + enteros), which occurs from routes outside the GI tract, such as intravenous routes. Enteral administration involves the esophagus, stomach, and...

 

Slowakia padaOlimpiade Musim Dingin 2010Kode IOCSVKKONSlovak Olympic and Sports CommitteeSitus webwww.olympic.sk (dalam bahasa Slowakia)Penampilan pada Olimpiade Musim Dingin 2010 di VancouverPeserta73 dalam 8 cabang olahragaPembawa benderaŽigmund Pálffy[1] (upacara pembukaan)Pavol Hurajt (upacara penutupan)MedaliPeringkat ke-17 1 1 1 Total 3 Penampilan pada Olimpiade Musim Dingin (ringkasan)19941998200220062010201420182022Penampilan terkait lainnya Hungaria...

Swiss professional racing driver Mathias BecheBeche at the 2016 24 Hours of Le Mans drivers paradeNationality SwissBorn (1986-06-28) 28 June 1986 (age 37)Geneva, SwitzerlandEuropean Le Mans Series careerDebut season2010Current teamRichard Mille by TDS RacingRacing licence FIA GoldCar number29Former teamsHope Polevision RacingApplewood SevenMatech CompetitionInter Europol CompetitionTDS Racing x VaillanteNielsen RacingStarts38Wins10Poles9Fastest laps2Best finish1st in 2012Previous series2...

 

Questa voce sull'argomento edizioni di competizioni calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Coppa Italia Primavera 2005-2006Tim Cup Primavera 2005-2006 Competizione Coppa Italia Primavera Sport Calcio Edizione 34ª Organizzatore Lega Serie A Luogo  Italia Risultati Vincitore  Inter(5° titolo) Secondo  Milan Cronologia della competizione 2004-2005 2006-2007 Manuale La Coppa Italia Primavera 2005-2006 è la t...

 

Arcidiocesi di PisaArchidioecesis PisanaChiesa latinaRegione ecclesiasticaToscana   Collocazione geografica Diocesi suffraganee Livorno, Massa Carrara-Pontremoli, Pescia, Volterra  Arcivescovo metropolita e primateGiovanni Paolo Benotto Vicario generaleGino Biagini Presbiteri175, di cui 124 secolari e 51 regolari1.785 battezzati per presbitero Religiosi52 uomini, 330 donne Diaconi24 permanenti  Abitanti331.779 Battezzati312.535 (94,2% del totale) StatoItalia Superficie847 km² ...

County in California, United States County in California, United StatesMono County, CaliforniaCountyCounty of MonoMono Lake, the dominant geographical feature in Mono County SealLogoInteractive map of Mono CountyLocation in the state of CaliforniaCoordinates: 37°55′N 118°52′W / 37.917°N 118.867°W / 37.917; -118.867CountryUnited StatesStateCaliforniaRegionEastern CaliforniaFounded1861Named forMono Lake, which is derived from Monachi, a Yokutsan name for native p...

 

يوبا سيتي    علم شعار   الإحداثيات 39°08′05″N 121°37′34″W / 39.134722222222°N 121.62611111111°W / 39.134722222222; -121.62611111111   [1] تاريخ التأسيس 1849  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة سوتر  عاصمة لـ مقاطعة سوتر  خصائص جغرافية &#...

 

English record producer (1929–1967) For other people named Joe Meek, see Joe Meek (disambiguation). Joe MeekMeek at his home recording studio, c. 1960sBackground informationBirth nameRobert George MeekAlso known asRobert Duke, Peter JacobsBorn(1929-04-05)5 April 1929Newent, Gloucestershire, EnglandDied3 February 1967(1967-02-03) (aged 37)Holloway Road, London, EnglandGenres Experimental pop[1] space age pop[2] rock and roll[3] outsider[4] Occupation(s)Re...

Overview of the history of the French language This article is about the history and evolution of the French language. For the history of the French people, see French people. For the history of the French culture, see culture of France. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of French – news · newspapers...

 

1772–1927 unit of Russia 57°49′N 28°20′E / 57.817°N 28.333°E / 57.817; 28.333 Pskov GovernorateПсковская губерния (Russian)Governorate of the Russian Empire1772–1927 Coat of arms Location within the Russian EmpireCapitalPskovHistory • Established 1772• Disestablished 1927 Political subdivisionseight uyezds Succeeded by Leningrad Oblast Pskov Oblast Pskov Governorate (‹See Tfd›Russian: Псковская губе�...

 

Sherlyn Cadapan and Karen EmpeñoCadapan (left) and EmpeñoBornCadapan: 1976 or 1977Empeño: 1983 or 1984Metro Manila, Philippines (both)DisappearedJune 26, 2006Hagonoy, Bulacan, PhilippinesStatusMissing for 18 years, 2 months and 28 daysEducationUniversity of the Philippines Diliman Sherlyn Cadapan (1976 or 1977 – disappeared June 26, 2006)[1] and Karen Empeño (1983 or 1984 – disappeared June 26, 2006)[1] were students who b...

Town in Dumfries and Galloway, Scotland For other uses, see Dumfries (disambiguation). Town and administrative centre in ScotlandDumfriesScottish Gaelic: Dùn Phris[1]Scots: DumfriesTown and administrative centreDumfries High Street, with the Midsteeple in the background, pictured in August 2012DumfriesLocation within Dumfries and GallowayPopulation33,470 (2022)[2]DemonymDoonhamerOS grid referenceNX976762• Edinburgh63 mi (101 km)• London2...

 

Carson PalmerPalmer nel 2015.Nazionalità Stati Uniti Altezza196 cm Peso107 kg Football americano RuoloQuarterback Termine carriera2017 CarrieraGiovanili 2000-2002 USC Trojans Squadre di club 2003-2011 Cincinnati Bengals2011-2012 Oakland Raiders2013-2017 Arizona Cardinals StatistichePartite176 Partite da titolare175 Yard passate44.537 Touchdown passati286 Intercetti subiti183 Passer rating87,8 Palmarès Trofeo Vittorie Selezioni al Pro Bowl 3 All-Pro 1 Vedi maggiori d...