Bézout matrix

In mathematics, a Bézout matrix (or Bézoutian or Bezoutiant) is a special square matrix associated with two polynomials, introduced by James Joseph Sylvester in 1853 and Arthur Cayley in 1857 and named after Étienne Bézout.[1][2] Bézoutian may also refer to the determinant of this matrix, which is equal to the resultant of the two polynomials. Bézout matrices are sometimes used to test the stability of a given polynomial.

Definition

Let and be two complex polynomials of degree at most n,

(Note that any coefficient or could be zero.) The Bézout matrix of order n associated with the polynomials f and g is

where the entries result from the identity

It is an n × n complex matrix, and its entries are such that if we let and for each , then:

To each Bézout matrix, one can associate the following bilinear form, called the Bézoutian:

Examples

  • For n = 3, we have for any polynomials f and g of degree (at most) 3:
  • Let and be the two polynomials. Then:

The last row and column are all zero as f and g have degree strictly less than n (which is 4). The other zero entries are because for each , either or is zero.

Properties

  • is symmetric (as a matrix);
  • ;
  • ;
  • is a bilinear function;
  • is a real matrix if f and g have real coefficients;
  • is nonsingular with if and only if f and g have no common roots.
  • with has determinant which is the resultant of f and g.

Applications

An important application of Bézout matrices can be found in control theory. To see this, let f(z) be a complex polynomial of degree n and denote by q and p the real polynomials such that f(iy) = q(y) + ip(y) (where y is real). We also denote r for the rank and σ for the signature of . Then, we have the following statements:

  • f(z) has n − r roots in common with its conjugate;
  • the left r roots of f(z) are located in such a way that:
    • (r + σ)/2 of them lie in the open left half-plane, and
    • (r − σ)/2 lie in the open right half-plane;
  • f is Hurwitz stable if and only if is positive definite.

The third statement gives a necessary and sufficient condition concerning stability. Besides, the first statement exhibits some similarities with a result concerning Sylvester matrices while the second one can be related to Routh–Hurwitz theorem.

Citations

References

  • Cayley, Arthur (1857), "Note sur la methode d'elimination de Bezout", J. Reine Angew. Math., 53: 366–367, doi:10.1515/crll.1857.53.366
  • Kreĭn, M. G.; Naĭmark, M. A. (1981) [1936], "The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations", Linear and Multilinear Algebra, 10 (4): 265–308, doi:10.1080/03081088108817420, ISSN 0308-1087, MR 0638124
  • Pan, Victor; Bini, Dario (1994). Polynomial and matrix computations. Basel, Switzerland: Birkhäuser. ISBN 0-8176-3786-9.
  • Pritchard, Anthony J.; Hinrichsen, Diederich (2005). Mathematical systems theory I: modelling, state space analysis, stability and robustness. Berlin: Springer. ISBN 3-540-44125-5.
  • Sylvester, James Joseph (1853), "On a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an Application to the Theory of Sturm's Functions, and That of the Greatest Algebraical Common Measure", Philosophical Transactions of the Royal Society of London, 143, The Royal Society: 407–548, doi:10.1098/rstl.1853.0018, ISSN 0080-4614, JSTOR 108572

Read other articles:

Harold Cummings Informasi pribadiNama lengkap Harold CummingsTanggal lahir 3 Januari 1992 (umur 32)Tempat lahir Panama City, PanamaTinggi 183 cm (6 ft 0 in)Posisi bermain BekInformasi klubKlub saat ini San Jose EarthquakesNomor 31Karier senior*Tahun Tim Tampil (Gol)2017 – San Jose Earthquakes 10 (0)Tim nasional2010 – Panama 52 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Harold Cummings (lahir 3 Januari 1992) adalah seorang pemain sepak bo...

 

Para suster di Rumah Sakit London Suster ngesot yaitu hantu yang memakai baju suster, jalannya sambil ngesot.[1] Dalam sejarahnya tidak ada yang bisa menentukan asal usul Suster ngesot, tetapi ada beberapa informasi dari mulut ke mulut di masyarakat yang kemudian dipercayai sebagai sejarah adanya Suster ngesot.[2] Sejarah Hantu suster ngesot dipercayai oleh masyarakat sebab adanya cerita atau sejarahnya, pertama ceritanya di Rumah Sakit Umum Cipto Mangunkusumo, Jakarta, sebab ...

 

Genus of bats Nyctalus Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Chiroptera Family: Vespertilionidae Tribe: Pipistrellini Genus: NyctalusBowdich, 1825 Type species Nyctalus verrucosus [1] Species See text Nyctalus is a genus of vespertilionid bats commonly known as the noctule bats. They are distributed in the temperate and subtropical areas of Europe, Asia and North Africa. There are eight species within this genus: Birdlike...

Canadian junior ice hockey league founded 2007 Greater Ontario JuniorHockey LeagueSportIce hockeyFounded2007CommissionerTim Simmons (Interim)No. of teams24CountriesCanadaHeadquartersCambridge, OntarioContinentNorth AmericaMost recentchampion(s)Leamington Flyers (1st title)Most titlesCaledonia Corvairs (4)TV partner(s)FloSportsOfficial websitegojhl.ca OHA Junior B WJBHL (1950–1968) EJBHL (1950–1972) MetJHL (1950–1989) NDJBHL (1954–1979) CJBHL (1954–1993) BCJHL (1958–1964) MOJBHL (1...

 

Maggie Hassan Portait officiel de Maggie Hassan (2017). Fonctions Sénatrice des États-Unis En fonction depuis le 3 janvier 2017(7 ans, 3 mois et 12 jours) Élection 8 novembre 2016 Réélection 8 novembre 2022 Circonscription New Hampshire Législature 115e, 116e, 117e et 118e Groupe politique Démocrate Prédécesseur Kelly Ayotte 81e gouverneure du New Hampshire 3 janvier 2013 – 2 janvier 2017(3 ans, 11 mois et 30 jours) Élection 6 novembre 2012 Réélect...

 

Eilif Peterssen 4 September 1852 – 29 Desember 1928 adalah seorang pelukis Norwegia. Ia terkenal karena seri lukisan pemandangan dan potretnya. Saat mulai terpengaruh oleh gaya impresionisme, ia sering diperbandingkan dengan Berthe Morisot.[1] Dalam tahun-tahun terakhir hidupnya, ia berkeliling Norwegia dan melukis berbagai pemandangan yang membuatnya terkenal. Masa kecil dan ringkasan karier Ia menghabiskan masa kecilnya di kompleks Hegdehauge, distrik Frogner. Ayahn...

Artificial intelligence program by DeepMind Part of a series onArtificial intelligence Major goals Artificial general intelligence Recursive self-improvement Planning Computer vision General game playing Knowledge reasoning Machine learning Natural language processing Robotics AI safety Approaches Symbolic Deep learning Bayesian networks Evolutionary algorithms Situated approach Hybrid intelligent systems Systems integration Applications Projects Deepfake Machine translation Generative AI Art...

 

Kapak Genggam Kapak genggam adalah sebuah batu yang mirip dengan kapak, tetapi tidak bertangkai dan cara mempergunakannya dengan cara menggenggam.[1] Kapak genggam terkenal juga dengan sebutan kapak perimbas, dalam ilmu prasejarah disebut chopper artinya alat penetak.[1] Kapak genggam pernah ditemukan oleh Gustav Heinrich Ralph von Koenigswald pada 1935 di Pacitan, Jawa Timur.[2] Batu genggam biasanya dibuat dari batu gamping.[3] Batu tersebut dipahat memanjang...

 

1984 song by Herrey's This article is about the song. For the album, see Diggi Loo, Diggi Ley. Diggi-Loo Diggi-LeySingle by Herrey'sfrom the album Diggi-Loo Diggi-Ley LanguageSwedishReleased1984Length3:02LabelMariannComposer(s)Torgny SöderbergLyricist(s)Britt LindeborgProducer(s) Anders Engberg Torgny Söderberg Eurovision Song Contest 1984 entryCountrySwedenArtist(s)Per HerreyLouis HerreyRichard HerreyAsHerrey'sLanguageSwedishComposer(s)Torgny SöderbergLyricist(s)Britt LindeborgConductorCu...

Song from the 1964 Mary Poppins film Supercalifragilisticexpialidocious1964 US singleSingle by Julie Andrews and Dick Van Dykefrom the album Mary Poppins: Original Cast Soundtrack B-sideA Spoonful of SugarReleased1964 (1964)Recorded1963GenreMusical, show tuneLength2:03LabelDisneylandSongwriter(s)Sherman Brothers Supercalifragilisticexpialidocious (/ˌsuːpərˌkælɪˌfrædʒɪˌlɪstɪkˌɛkspiˌælɪˈdoʊʃəs/ ⓘ SOO-pər-KAL-ih-FRAJ-ih-LISS-tik-EKS-pee-AL-ih-DOH-shəss) is a so...

 

Nationalliga 1965-1966 Competizione Fußball-Bundesliga Sport Calcio Edizione 55ª Organizzatore ÖFB Luogo  Austria Partecipanti 14 Cronologia della competizione 1964-65 1966-67 Manuale L'edizione 1965-66 della Nationalliga (A), la cui organizzazione fu ripresa direttamente dalla federazione dopo la liquidazione della lega, vide la vittoria finale dell'Admira Wacker. Capocannoniere del torneo fu Hans Buzek dell'Austria Vienna con 18 reti. Classifica finale Classifica G V N P GF GS Pt 1...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

Address by US president Theodore Roosevelt This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 1906 State of the Union Address – news · newspapers · books · scholar · JSTOR (September 2021) The 1906 State of the Union Address was written by Theodore Roosevelt, the 26th president of the United States, o...

 

American politician For other people named Robert Garcia, see Robert Garcia (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Robert Garcia New York politician – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) Bob GarciaMember of the...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sandroyd School – news · newspapers · books · scholar · JSTOR (May 2012) (Learn how and when to remove this message) Independent school in Tollard Royal, Wiltshire, EnglandSandroyd SchoolMain buildingAddressRushmore ParkTollard Royal, Wiltshire, SP5 5QDEngland...

Cabinet of Singapore from 2006 to 2011 Second Lee Hsien Loong Cabinet14th Cabinet of Singapore2006–2011Date formed30 May 2006Date dissolved20 May 2011People and organisationsHead of stateS. R. NathanHead of governmentLee Hsien LoongMember partyPeople's Action PartyStatus in legislatureSupermajority82 / 94Opposition partyWorkers' PartyOpposition leaderLow Thia KhiangHistoryElection(s)6 May 2006Legislature term(s)11thPredecessor1st Lee CabinetSuccessor3rd Lee Cabinet The Second Cabinet of Lee...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Armed Forces Institute of Cardiology – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this message) Hospital in Punjab, PakistanArmed Forces Institute of Cardiologyمسلح افواج امراض دل ہسپتالGovern...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة ...

Single-edged blade This article is about the Chinese sword. For the Filipino knife and sword, see Butterfly knife and Balisword. For the Hong Kong film, see Butterfly and Sword. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Butterfly sword – news · newspapers · books · scholar · JSTOR (December 2009) (Lear...

 

Neighborhood in Pittsburgh Neighborhood of Pittsburgh in Allegheny County, Pennsylvania, United StatesEast HillsNeighborhood of PittsburghCoordinates: 40°27′14″N 79°52′34″W / 40.454°N 79.876°W / 40.454; -79.876CountryUnited StatesStatePennsylvaniaCountyAllegheny CountyCityPittsburghArea[1] • Total0.541 sq mi (1.40 km2)Population (2010)[1] • Total3,169 • Density5,900/sq mi (2,300/km...