Matrix of ones

In mathematics, a matrix of ones or all-ones matrix is a matrix with every entry equal to one.[1] For example:

Some sources call the all-ones matrix the unit matrix,[2] but that term may also refer to the identity matrix, a different type of matrix.

A vector of ones or all-ones vector is matrix of ones having row or column form; it should not be confused with unit vectors.

Properties

For an n × n matrix of ones J, the following properties hold:

When J is considered as a matrix over the real numbers, the following additional properties hold:

Applications

The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory. For example, if A is the adjacency matrix of an n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA.[7] As a second example, the matrix appears in some linear-algebraic proofs of Cayley's formula, which gives the number of spanning trees of a complete graph, using the matrix tree theorem.

The logical square roots of a matrix of ones, logical matrices whose square is a matrix of ones, can be used to characterize the central groupoids. Central groupoids are algebraic structures that obey the identity . Finite central groupoids have a square number of elements, and the corresponding logical matrices exist only for those dimensions.[8]

See also

References

  1. ^ Horn, Roger A.; Johnson, Charles R. (2012), "0.2.8 The all-ones matrix and vector", Matrix Analysis, Cambridge University Press, p. 8, ISBN 9780521839402.
  2. ^ Weisstein, Eric W., "Unit Matrix", MathWorld
  3. ^ Stanley, Richard P. (2013), Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, Lemma 1.4, p. 4, ISBN 9781461469988.
  4. ^ Stanley (2013); Horn & Johnson (2012), p. 65.
  5. ^ a b Timm, Neil H. (2002), Applied Multivariate Analysis, Springer texts in statistics, Springer, p. 30, ISBN 9780387227719.
  6. ^ Smith, Jonathan D. H. (2011), Introduction to Abstract Algebra, CRC Press, p. 77, ISBN 9781420063721.
  7. ^ Godsil, Chris (1993), Algebraic Combinatorics, CRC Press, Lemma 4.1, p. 25, ISBN 9780412041310.
  8. ^ Knuth, Donald E. (1970), "Notes on central groupoids", Journal of Combinatorial Theory, 8: 376–390, doi:10.1016/S0021-9800(70)80032-1, MR 0259000


Read other articles:

مارثا هاريس   معلومات شخصية الميلاد 19 أغسطس 1994 (العمر 29 سنة)إنجلترا  الطول 5 قدم 1 بوصة (1.56 م) مركز اللعب مدافع الجنسية المملكة المتحدة  معلومات النادي النادي الحالي Birmingham City W.F.C. [الإنجليزية]‏ الرقم 2 المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2012–2013 Notts County Ladies F...

Filippo Santoro Arcebispo da Igreja Católica Arcebispo emérito de Taranto Info/Prelado da Igreja Católica Hierarquia Papa Francisco Atividade eclesiástica Diocese Arquidiocese de Taranto Nomeação 21 de novembro de 2011 Entrada solene 5 de janeiro de 2012 Predecessor Benigno Luigi Papa, O.F.M.Cap. Sucessor Ciro Miniero Mandato 2011 - 2023 Ordenação e nomeação Ordenação presbiteral 20 de maio de 1972Bari Nomeação episcopal 10 de abril de 1996 Ordenação episcopal 29 de junho de 1...

Опис файлу Опис Логотип ФК «Сент-Френсіз (футбольний клуб, Сейшельські острови)» Джерело https://it.pinterest.com/pin/400961173055941073/ Час створення Невідомо Автор зображення ФК «Сент-Френсіз (футбольний клуб, Сейшельські острови)» Ліцензія див. нижче Обґрунтування добропорядного використ

エリーザベト・ドロテアElisabeth Dorothea ヘッセン家 出生 (1676-04-24) 1676年4月24日 神聖ローマ帝国 ヘッセン=ダルムシュタット方伯領、ダルムシュタット死去 (1721-09-09) 1721年9月9日(45歳没) 神聖ローマ帝国 ヘッセン=ホンブルク方伯領、ホンブルク埋葬 神聖ローマ帝国 ヘッセン=ホンブルク方伯領、ホンブルク、バート・ホンブルク城配偶者 ヘッセン=ホンブルク方伯フ

Watanabe HarutoNama asal渡辺温斗LahirWatanabe Haruto5 April 2004 (umur 19)Fukuoka, JepangKebangsaanJepangNama lain하루토 ; Travis WatanabePekerjaanRapperKarier musikGenreK-popHip hopR&BTahun aktif2020–sekarangLabelYG EntertainmentArtis terkaitTreasureYG Family Watanabe Haruto atau lebih dikenal dengan nama Haruto (Hangul:하루토, Kana:ハルト, Kanji: 渡辺温斗; lahir 5 April 2004) adalah seorang penyanyi asal Jepang yang aktif melalui grup vokal asal Ko...

Pour les articles homonymes, voir Éditions Grasset, Bernard Grasset (homme politique) et Grasset. Bernard GrassetBiographieNaissance 6 mars 1881ChambéryDécès 20 octobre 1955 (à 74 ans)7e arrondissement de ParisSépulture Cimetière du Père-Lachaise, Grave of Grasset (d)Nationalité françaiseActivité éditeurParentèle Joseph Grasset (oncle)Autres informationsCondamnation Indignité nationaleTombe au cimetière du Père-Lachaise.modifier - modifier le code - modifier Wik...

Bandeira usada pela organização. A Frente de Libertação de Jammu e Caxemira (em inglês: Jammu Kashmir Liberation Front, JKLF) é uma organização separatista militante ativa nos territórios da Caxemira administrados pela Índia e pelo Paquistão. Foi fundada por Amanullah Khan, com Maqbool Bhat também creditado como co-fundador. Originalmente uma ala militante da Frente do Plebiscito de Azad Kashmir, a organização mudou oficialmente seu nome para Jammu Kashmir Liberation Front em Bi...

Singaporean TV series or program IruvarTamilஇருவர் GenreSoap opera MysteryWritten byPrema Pon Rajoo Raja Tamilmaran Nalan ApanaScreenplay byKumaran Sundaram Nalan Apana Dialogue Raja TamilmaranDirected byKumaran Sundaram Bala SubramaniamStarring Indra Gayathri Segaran Vishnu Varman Jabu Balakumaran Theme music composerVicknesh SaravananCountry of originSingaporeOriginal languageTamilNo. of episodes62 (+1 Hour Episode)ProductionProducerRaja TamilmaranEditors Steven Sundrarajan...

Darwis Muhammad Syekh Darwis Muhammad As-Samarqandi Quddasallahu sirruhu merupakan salah satu Tokoh Sufi dan penerus syekh Zaid Wakhshi q.s dalam silsilah tarekat Naqsyabandiyah. Awal Hidup Beliau Lahir pada tanggal 6 syawal 846 H atau 17 Februari 1441 M di Desa Asqarar, Desa kecil di kota Bukhara, Uzbekistan. Beliau adalah seorang Ghawth (peranara tertinggi) dari wali-wali tertemuka dan ulama-ulama Islam yang diberkahi di zamanya. Beliaulah Guru dari Kerajaan Tuntunan. Beliau tumbuh dalam ru...

Language-learning website and mobile app Duolingo, Inc.Screenshot HomepageType of businessPublic companyTraded asNasdaq: DUOLHeadquartersPittsburgh, Pennsylvania, United StatesArea servedWorldwideFounder(s)Luis von AhnSeverin HackerCEOLuis von AhnIndustryOnline educationProductsDuolingo, Duolingo Math, Duolingo ABC, Duolingo English TestServicesLanguage, music and mathematics courses and tests.Revenue US$369 million (2022) [1]Operating income US$−65 million (2022) ...

Breakfast cereal made by Post Cereals Golden CrispGolden Crisp – Sweetened Puffed Wheat Cereal, in a bowl with a spoonProduct typeBreakfast cerealOwnerPost HoldingsProduced byPost Consumer BrandsCountryU.S.Introduced1948; 75 years ago (1948) (as Happy Jax)Related brandsSugar Crisp (Canada)Honey SmacksWebsitewww.goldencrisp.com Golden Crisp, also known as Sugar Crisp in Canada, is a brand of breakfast cereal made by Post Consumer Brands that consists of sweetened, cand...

Species of amphibian Southern torrent salamander Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Urodela Family: Rhyacotritonidae Genus: Rhyacotriton Species: R. variegatus Binomial name Rhyacotriton variegatusStebbins & Lowe, 1951 The southern torrent salamander (Rhyacotriton variegatus) is a member of the salamander family Rhyacotritonidae. This species of torrent sala...

2022 Taiwanese filmThe Post-Truth WorldTheatrical release posterTraditional Chinese罪後真相Simplified Chinese罪后真相Literal meaningTruth after crimeHanyu PinyinZuì hòu zhēn xiàng Directed byChen I-fuProduced byDennis WuStarringJoseph ChangEdward ChenCaitlin FangAviis ZhongAmber AnProductioncompaniesBole FilmType.Writers Co.Distributed byBole FilmVie Vision PicturesRelease date October 28, 2022 (2022-10-28)[1] Running time120 minutes[2]CountryTa...

Mapping between categories This article is about the mathematical concept. For other uses, see Functor (disambiguation). Functoriality redirects here. For the Langlands functoriality conjecture in number theory, see Langlands program § Functoriality. In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and...

36×36 grid variant of Japanese chess The game's 36×36 board with pieces in their opening positions Shogi variantsChu shōgi Standard shōgi (9×9, drops) Small variants Dōbutsu shōgi (3×4, for children) Micro shōgi (4×5) Minishōgi (5×5) Kyoto shōgi (5×5) Goro goro shōgi (5×6) Janken shōgi (6×6; ja, zh) Judkins shōgi (6×6) Whale shōgi (6×6) Tori shōgi (7×7) Yari shōgi (7×9) EuroShogi (8×8) Heian shōgi (8×8 or 9×8, 12th c.) Standard-size variants Sho shōgi (9×9, 16t...

JavaScript engine developed in Java This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nashorn JavaScript engine – news · newspapers · books · scholar · ...

رجم عقاب  - منطقة سكنية -  تقسيم إداري البلد الأردن  المحافظة محافظة العاصمة لواء لواء الجيزة قضاء قضاء أم الرصاص السكان التعداد السكاني 624 نسمة (إحصاء 2015)   • الذكور 344   • الإناث 280   • عدد الأسر 114 معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   رج...

River in Georgia, the United States of America Altamaha RiverThe Altamaha River viewed from the bridge between Glynn County and McIntosh County, Georgia, USAMap of the Altamaha River watershed showing the two main tributaries, the Ocmulgee River and the Oconee RiverLocationCountryUnited StatesStateGeorgiaPhysical characteristicsSourcenear Hazlehurst • locationGeorgia • coordinates31°57′33″N 82°32′37″W / 31.95917°N 82.54361°W...

Embezzlement scandal in Bihar state, India The Fodder Scam involved hundreds of millions of dollars in alleged fraudulent reimbursements from the treasury of Bihar state for fodder, medicines and husbandry supplies for non-existent livestock. Lalu Prasad Yadav, on the left, is the highest-profile person convicted in the fodder scam. The Fodder Scam was a corruption scandal that involved the embezzlement of about ₹9.4 billion (equivalent to ₹48 billion or US$600 million i...

1977 film directed by Clint Eastwood For other uses, see Gauntlet (disambiguation). The GauntletTheatrical release poster by Frank FrazettaDirected byClint EastwoodWritten byMichael ButlerDennis ShryackProduced byRobert DaleyStarringClint EastwoodSondra LockeCinematographyRexford L. MetzEdited byJoel CoxFerris WebsterMusic byJerry FieldingProductioncompanyThe Malpaso CompanyDistributed byWarner Bros.Release dateDecember 21, 1977Running time109 minutesCountryUnited StatesLanguageEnglishBudget$...