Duplication and elimination matrices

In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

Duplication matrix

The duplication matrix is the unique matrix which, for any symmetric matrix , transforms into :

.

For the symmetric matrix , this transformation reads


The explicit formula for calculating the duplication matrix for a matrix is:

Where:

  • is a unit vector of order having the value in the position and 0 elsewhere;
  • is a matrix with 1 in position and and zero elsewhere

Here is a C++ function using Armadillo (C++ library):

arma::mat duplication_matrix(const int &n) {
    arma::mat out((n*(n+1))/2, n*n, arma::fill::zeros);
    for (int j = 0; j < n; ++j) {
        for (int i = j; i < n; ++i) {
            arma::vec u((n*(n+1))/2, arma::fill::zeros);
            u(j*n+i-((j+1)*j)/2) = 1.0;
            arma::mat T(n,n, arma::fill::zeros);
            T(i,j) = 1.0;
            T(j,i) = 1.0;
            out += u * arma::trans(arma::vectorise(T));
        }
    }
    return out.t();
}

Elimination matrix

An elimination matrix is a matrix which, for any matrix , transforms into :

[1]

By the explicit (constructive) definition given by Magnus & Neudecker (1980), the by elimination matrix is given by

where is a unit vector whose -th element is one and zeros elsewhere, and .

Here is a C++ function using Armadillo (C++ library):

arma::mat elimination_matrix(const int &n) {
    arma::mat out((n*(n+1))/2, n*n, arma::fill::zeros);
    for (int j = 0; j < n; ++j) {
        arma::rowvec e_j(n, arma::fill::zeros);
        e_j(j) = 1.0;
        for (int i = j; i < n; ++i) {
            arma::vec u((n*(n+1))/2, arma::fill::zeros);
            u(j*n+i-((j+1)*j)/2) = 1.0;
            arma::rowvec e_i(n, arma::fill::zeros);
            e_i(i) = 1.0;
            out += arma::kron(u, arma::kron(e_j, e_i));
        }
    }
    return out;
}

For the matrix , one choice for this transformation is given by

.

Notes

  1. ^ Magnus & Neudecker (1980), Definition 3.1

References