Tridiagonal matrix

In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrix is tridiagonal:

The determinant of a tridiagonal matrix is given by the continuant of its elements.[1]

An orthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm.

Properties

A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix.[2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A satisfies ak,k+1 ak+1,k > 0 for all k, so that the signs of its entries are symmetric, then it is similar to a Hermitian matrix, by a diagonal change of basis matrix. Hence, its eigenvalues are real. If we replace the strict inequality by ak,k+1 ak+1,k ≥ 0, then by continuity, the eigenvalues are still guaranteed to be real, but the matrix need no longer be similar to a Hermitian matrix.[3]

The set of all n × n tridiagonal matrices forms a 3n-2 dimensional vector space.

Many linear algebra algorithms require significantly less computational effort when applied to diagonal matrices, and this improvement often carries over to tridiagonal matrices as well.

Determinant

The determinant of a tridiagonal matrix A of order n can be computed from a three-term recurrence relation.[4] Write f1 = |a1| = a1 (i.e., f1 is the determinant of the 1 by 1 matrix consisting only of a1), and let

The sequence (fi) is called the continuant and satisfies the recurrence relation

with initial values f0 = 1 and f−1 = 0. The cost of computing the determinant of a tridiagonal matrix using this formula is linear in n, while the cost is cubic for a general matrix.

Inversion

The inverse of a non-singular tridiagonal matrix T

is given by

where the θi satisfy the recurrence relation

with initial conditions θ0 = 1, θ1 = a1 and the ϕi satisfy

with initial conditions ϕn+1 = 1 and ϕn = an.[5][6]

Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal[7] or Toeplitz matrices[8] and for the general case as well.[9][10]

In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa.[11] The inverse of a symmetric tridiagonal matrix can be written as a single-pair matrix (a.k.a. generator-representable semiseparable matrix) of the form[12][13]

where with

Solution of linear system

A system of equations Ax = b for  can be solved by an efficient form of Gaussian elimination when A is tridiagonal called tridiagonal matrix algorithm, requiring O(n) operations.[14]

Eigenvalues

When a tridiagonal matrix is also Toeplitz, there is a simple closed-form solution for its eigenvalues, namely:[15][16]

A real symmetric tridiagonal matrix has real eigenvalues, and all the eigenvalues are distinct (simple) if all off-diagonal elements are nonzero.[17] Numerous methods exist for the numerical computation of the eigenvalues of a real symmetric tridiagonal matrix to arbitrary finite precision, typically requiring operations for a matrix of size , although fast algorithms exist which (without parallel computation) require only .[18]

As a side note, an unreduced symmetric tridiagonal matrix is a matrix containing non-zero off-diagonal elements of the tridiagonal, where the eigenvalues are distinct while the eigenvectors are unique up to a scale factor and are mutually orthogonal.[19]

Similarity to symmetric tridiagonal matrix

For unsymmetric or nonsymmetric tridiagonal matrices one can compute the eigendecomposition using a similarity transformation. Given a real tridiagonal, nonsymmetric matrix

where . Assume that each product of off-diagonal entries is strictly positive and define a transformation matrix by[20]

The similarity transformation yields a symmetric tridiagonal matrix by:[21][20]

Note that and have the same eigenvalues.

Computer programming

A transformation that reduces a general matrix to Hessenberg form will reduce a Hermitian matrix to tridiagonal form. So, many eigenvalue algorithms, when applied to a Hermitian matrix, reduce the input Hermitian matrix to (symmetric real) tridiagonal form as a first step.[22]

A tridiagonal matrix can also be stored more efficiently than a general matrix by using a special storage scheme. For instance, the LAPACK Fortran package stores an unsymmetric tridiagonal matrix of order n in three one-dimensional arrays, one of length n containing the diagonal elements, and two of length n − 1 containing the subdiagonal and superdiagonal elements.

Applications

The discretization in space of the one-dimensional diffusion or heat equation

using second order central finite differences results in

with discretization constant . The matrix is tridiagonal with and . Note: no boundary conditions are used here.

See also

Notes

  1. ^ Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. pp. 516–525.
  2. ^ Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press. p. 28. ISBN 0521386322.
  3. ^ Horn & Johnson, page 174
  4. ^ El-Mikkawy, M. E. A. (2004). "On the inverse of a general tridiagonal matrix". Applied Mathematics and Computation. 150 (3): 669–679. doi:10.1016/S0096-3003(03)00298-4.
  5. ^ Da Fonseca, C. M. (2007). "On the eigenvalues of some tridiagonal matrices". Journal of Computational and Applied Mathematics. 200: 283–286. doi:10.1016/j.cam.2005.08.047.
  6. ^ Usmani, R. A. (1994). "Inversion of a tridiagonal jacobi matrix". Linear Algebra and its Applications. 212–213: 413–414. doi:10.1016/0024-3795(94)90414-6.
  7. ^ Hu, G. Y.; O'Connell, R. F. (1996). "Analytical inversion of symmetric tridiagonal matrices". Journal of Physics A: Mathematical and General. 29 (7): 1511. doi:10.1088/0305-4470/29/7/020.
  8. ^ Huang, Y.; McColl, W. F. (1997). "Analytical inversion of general tridiagonal matrices". Journal of Physics A: Mathematical and General. 30 (22): 7919. doi:10.1088/0305-4470/30/22/026.
  9. ^ Mallik, R. K. (2001). "The inverse of a tridiagonal matrix". Linear Algebra and its Applications. 325: 109–139. doi:10.1016/S0024-3795(00)00262-7.
  10. ^ Kılıç, E. (2008). "Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions". Applied Mathematics and Computation. 197: 345–357. doi:10.1016/j.amc.2007.07.046.
  11. ^ Raf Vandebril; Marc Van Barel; Nicola Mastronardi (2008). Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems. JHU Press. Theorem 1.38, p. 41. ISBN 978-0-8018-8714-7.
  12. ^ Meurant, Gerard (1992). "A review on the inverse of symmetric tridiagonal and block tridiagonal matrices". SIAM Journal on Matrix Analysis and Applications. 13 (3): 707–728. doi:10.1137/0613045.
  13. ^ Bossu, Sebastien (2024). "Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices". Linear Algebra and its Applications. 699: 129–158. arXiv:2304.06100. doi:10.1016/j.laa.2024.06.018.
  14. ^ Golub, Gene H.; Van Loan, Charles F. (1996). Matrix Computations (3rd ed.). The Johns Hopkins University Press. ISBN 0-8018-5414-8.
  15. ^ Noschese, S.; Pasquini, L.; Reichel, L. (2013). "Tridiagonal Toeplitz matrices: Properties and novel applications". Numerical Linear Algebra with Applications. 20 (2): 302. doi:10.1002/nla.1811.
  16. ^ This can also be written as because , as is done in: Kulkarni, D.; Schmidt, D.; Tsui, S. K. (1999). "Eigenvalues of tridiagonal pseudo-Toeplitz matrices" (PDF). Linear Algebra and its Applications. 297: 63. doi:10.1016/S0024-3795(99)00114-7.
  17. ^ Parlett, B.N. (1997) [1980]. The Symmetric Eigenvalue Problem. Classics in applied mathematics. Vol. 20. SIAM. ISBN 0-89871-402-8. OCLC 228147822.
  18. ^ Coakley, E.S.; Rokhlin, V. (2012). "A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices". Applied and Computational Harmonic Analysis. 34 (3): 379–414. doi:10.1016/j.acha.2012.06.003.
  19. ^ Dhillon, Inderjit Singh (1997). A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (PDF) (PhD). University of California, Berkeley. p. 8. CSD-97-971, ADA637073.
  20. ^ a b Kreer, M. (1994). "Analytic birth-death processes: a Hilbert space approach". Stochastic Processes and their Applications. 49 (1): 65–74. doi:10.1016/0304-4149(94)90112-0.
  21. ^ Meurant, Gérard (October 2008). "Tridiagonal matrices" (PDF) – via Institute for Computational Mathematics, Hong Kong Baptist University.
  22. ^ Eidelman, Yuli; Gohberg, Israel; Gemignani, Luca (2007-01-01). "On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms". Linear Algebra and its Applications. 420 (1): 86–101. doi:10.1016/j.laa.2006.06.028. ISSN 0024-3795.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SDN Cipayung 06 PetangSekolah Dasar Negeri Cipayung 06 PetangInformasiJenisNegeriNomor Pokok Sekolah Nasional20104343Jumlah siswa281 2010StatusAktifAlamatLokasiJl. Komplek Perwira Tni Ad Cipayung, Jakarta Timur, DKI Jakarta, IndonesiaSitus w...

 

2012 promotional single by Missy Elliott featuring TimbalandTriple ThreatPromotional single by Missy Elliott featuring TimbalandReleasedSeptember 18, 2012Length3:42LabelGoldmindAtlanticSongwriter(s)Melissa A. ElliottTim MosleyProducer(s)TimbalandJerome J-Roc Harmon Triple Threat is a song by American rapper, producer, singer-songwriter Missy Elliott featuring a guest appearance by childhood friend and longtime collaborator Timbaland. Originally, a snippet of the song premiered in March 2012 d...

 

National Paralympic Committee of Norway Norwegian Olympic and Paralympic Committee and Confederation of SportsCountry/Region NorwayCodeNORCreated15 March 1861ContinentalAssociationEOCHeadquartersOslo, NorwayPresidentBerit Kjøll[1]Secretary GeneralInge AndersenWebsitewww.idrettsforbundet.no Part of a series on1994 Winter Olympics Bid process Venues Mascots Opening ceremony (flag bearers) Medal table (medalists) Closing ceremony (flag bearers) Paralympics (medal table) IOC NOC LOO...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SMA Negeri 2 SibolgaInformasiJurusan atau peminatanIPA dan IPSRentang kelasX IPA, X IPS, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum 2013AlamatLokasiJl. Pattimura, Sibolga, Sumatera UtaraMoto SMA Negeri (SMAN) 2 Sibolga merupakan salah satu Sekola...

 

Cet article est une ébauche concernant un groupe de musique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Texas Lightning Jane et Jon lors d'un concert, en 2007.Informations générales Pays d'origine Allemagne Genre musical Musique country, pop Années actives Depuis 2000 Site officiel texaslightning.net Composition du groupe Membres Jonny OlsenMarkus SchmidtUwe FrenzelOlli DittrichJane Comerford Anciens me...

 

ديبيو     الإحداثيات 42°54′42″N 78°42′06″W / 42.9117°N 78.7017°W / 42.9117; -78.7017  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة إيري  خصائص جغرافية  المساحة 13.147774 كيلومتر مربع13.141449 كيلومتر مربع (1 أبريل 2010)  ارتفاع 205 متر  عدد السكا�...

American baseball player (born 1964) For other uses, see Bobby Witt (disambiguation) and Robert Witt. Baseball player Bobby WittPitcherBorn: (1964-05-11) May 11, 1964 (age 59)Arlington, Virginia, U.S.Batted: RightThrew: RightMLB debutApril 10, 1986, for the Texas RangersLast MLB appearanceOctober 7, 2001, for the Arizona DiamondbacksMLB statisticsWin–loss record142–157Earned run average4.83Strikeouts1,955 Teams Texas Rangers (1986–1992) Oakland Athleti...

 

Form of old Earth creationism This article is about an interpretation of the biblical creation account. For the philosophical argument for God's existence, see God of the gaps. Part of a series onCreationism History Types Young Earth Time dilation creationism Old Earth day-age gap progressive Neo-creationism Biblical cosmology Book of Genesis creation narrative framework interpretation as an allegory Omphalos hypothesis Creation science Created kind Flood geology Creationist cosmologies Intel...

 

Erlis Terdikbayev, the current Chief of the General Staff. The General Staff of the Armed Forces of Kyrgyz Republic (Kyrgyz: Кыргыз Республикасынын Куралдуу Күчтөрүнүн Башкы штабынын, Kyrgyz Respublikasynyn Kuralduu Küxhtörünün Bashky shtabynyn) is the military staff of the Armed Forces of the Kyrgyz Republic. The Chief of the General Staff is appointed by the President of Kyrgyzstan, who is the supreme commander-in-chief of the armed fo...

Aaron Murray is the Bulldog's career leader in passing yards and passing touchdowns. The Georgia Bulldogs football statistical leaders are individual statistical leaders of the Georgia Bulldogs football program in various categories,[1] including passing, rushing, receiving, total offense, defensive stats, and kicking. Within those areas, the lists identify single-game, Single season and career leaders. The Bulldogs represent the University of Georgia in the NCAA's Southeastern Confe...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

For other people with the same name, see Frank Johnson. Francis White JohnsonFrank W. JohnsonNickname(s)FrankBornOctober 3, 1799Leesburg, Virginia, United StatesDiedApril 8, 1884(1884-04-08) (aged 84)Aguascalientes, MexicoBuriedTexas State CemeteryAllegiance Republic of TexasService/branchTexian Army Army of the Republic of TexasYears of service1835-36RankCo-commanderBattles/warsBattle of AnahuacSiege of BexarBattle of GoliadBattle of San PatricioOther workConstableDelegateSurv...

Публи́чная исто́рия (англ. public history) — сравнительно новая область знания, посвящённая проблематике бытования истории в публичной сфере как с практической, так и с теоретической точки зрения. Дмитрий Врубель. Портрет диссидента, лауреата Нобелевской премии мира 1975...

 

COVID-19 press conference held during the COVID-19 pandemic The Downing Street Press Briefing Room is a news media room located in 9 Downing Street where press conferences are hosted by the Prime Minister, Cabinet ministers, and government officials. The Prime Minister also uses the room to give ministerial broadcasts to the country and the press.[1] History The first broadcast made by a prime minister was by Anthony Eden on 27 April 1956 through the BBC,[2] and over time pre...

 

This is a list of I. M. Pei projects. I. M. Pei (1917–2019) was a Chinese-American architect known for his creative use of modernist architecture in combination with natural elements and open spaces. During his decades of architectural work, he designed some of the world's most recognizable buildings in countries around the world. List of I. M. Pei projects Project City Country Designed Completed Notes Image 131 Ponce de Leon Avenue Atlanta, Georgia USA 1949[1] Under demolition/red...

American baseball player (born 1996) Baseball player CJ AlexanderAlexander with the Omaha Storm Chasers in 2023Kansas City Royals – No. 40Third basemanBorn: (1996-07-17) July 17, 1996 (age 27)Merrillville, Indiana, U.S.Bats: LeftThrows: RightMLB debutJune 24, 2024, for the Kansas City RoyalsMLB statistics (through July 3, 2024)Batting average.125Home runs0Runs batted in0 Teams Kansas City Royals (2024–present) Charles Joseph Wesley Alexander (born July 17, 1996) is an ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dinasti Zankiyah – berita · surat kabar · buku · cendekiawan · JSTOR Dinasti Zangiزنكيون1127–1250Dinasti Zankiyah pada puncak terbesarnyaStatusVassal Seljuk RayaIbu kotaAleppoBahasa yang umu...

 

Rosario Assunto Rosario Assunto (Caltanissetta, 28 marzo 1915 – Roma, 24 gennaio 1994) è stato un filosofo italiano. È stato un teorico dell'arte ed esteta del paesaggio italiano. Indice 1 Biografia 1.1 Prima del 68 1.2 Dopo il 68 1.3 Premio Internazionale Carlo Scarpa 2 Pensiero 3 Opere 4 Note 5 Bibliografia 6 Voci correlate 7 Altri progetti 8 Collegamenti esterni Biografia Prima del 68 Ha compiuto i suoi studi secondari presso il Liceo classico Ruggero Settimo di Caltanissetta, sua citt...

American online language-learning service Mango LanguagesFounded2007FounderJason Teshuba, Mike Teshuba, Ryan Whalen and Mike GoulasHeadquartersFarmington Hills, MichiganWebsitewww.mangolanguages.com Mango Languages is an American online language-learning website and mobile app based in Farmington Hills, Michigan, for academic institutions, libraries, corporations, government agencies, and individuals.[1][2][3] A Mango membership can be free at local libraries,[4 ...

 

Voce principale: Ginnastica ai Giochi della XXX Olimpiade.   SbarraLondra 2012 Pittogramma della ginnastica artistica a Londra 2012 Informazioni generaliLuogoLondra - The O2 Arena Periodo7 agosto 2012 Partecipanti8 da 6 nazioni Podio Epke Zonderland  Paesi Bassi Fabian Hambüchen  Germania Zou Kai  Cina Edizione precedente e successiva Pechino 2008 Rio de Janeiro 2016 Ginnastica a Londra 2012 Artistica Qualificazioni uomini donne Concorso individuale uomini donne Conc...