Band matrix

In mathematics, particularly matrix theory, a band matrix or banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.

Band matrix

Bandwidth

Formally, consider an n×n matrix A=(ai,j ). If all matrix elements are zero outside a diagonally bordered band whose range is determined by constants k1 and k2:

then the quantities k1 and k2 are called the lower bandwidth and upper bandwidth, respectively.[1] The bandwidth of the matrix is the maximum of k1 and k2; in other words, it is the number k such that if .[2]

Examples

Applications

In numerical analysis, matrices from finite element or finite difference problems are often banded. Such matrices can be viewed as descriptions of the coupling between the problem variables; the banded property corresponds to the fact that variables are not coupled over arbitrarily large distances. Such matrices can be further divided – for instance, banded matrices exist where every element in the band is nonzero.

Problems in higher dimensions also lead to banded matrices, in which case the band itself also tends to be sparse. For instance, a partial differential equation on a square domain (using central differences) will yield a matrix with a bandwidth equal to the square root of the matrix dimension, but inside the band only 5 diagonals are nonzero. Unfortunately, applying Gaussian elimination (or equivalently an LU decomposition) to such a matrix results in the band being filled in by many non-zero elements.

Band storage

Band matrices are usually stored by storing the diagonals in the band; the rest is implicitly zero.

For example, a tridiagonal matrix has bandwidth 1. The 6-by-6 matrix

is stored as the 6-by-3 matrix

A further saving is possible when the matrix is symmetric. For example, consider a symmetric 6-by-6 matrix with an upper bandwidth of 2:

This matrix is stored as the 6-by-3 matrix:

Band form of sparse matrices

From a computational point of view, working with band matrices is always preferential to working with similarly dimensioned square matrices. A band matrix can be likened in complexity to a rectangular matrix whose row dimension is equal to the bandwidth of the band matrix. Thus the work involved in performing operations such as multiplication falls significantly, often leading to huge savings in terms of calculation time and complexity.

As sparse matrices lend themselves to more efficient computation than dense matrices, as well as in more efficient utilization of computer storage, there has been much research focused on finding ways to minimise the bandwidth (or directly minimise the fill-in) by applying permutations to the matrix, or other such equivalence or similarity transformations.[3]

The Cuthill–McKee algorithm can be used to reduce the bandwidth of a sparse symmetric matrix. There are, however, matrices for which the reverse Cuthill–McKee algorithm performs better. There are many other methods in use.

The problem of finding a representation of a matrix with minimal bandwidth by means of permutations of rows and columns is NP-hard.[4]

See also

Notes

References

  • Atkinson, Kendall E. (1989), An Introduction to Numerical Analysis, John Wiley & Sons, ISBN 0-471-62489-6.
  • Davis, Timothy A. (2006), Direct Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, ISBN 978-0-898716-13-9.
  • Feige, Uriel (2000), "Coping with the NP-Hardness of the Graph Bandwidth Problem", Algorithm Theory - SWAT 2000, Lecture Notes in Computer Science, vol. 1851, pp. 129–145, doi:10.1007/3-540-44985-X_2.
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins, ISBN 978-0-8018-5414-9.
  • Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 2.4", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8.

Read other articles:

Ateuchus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Scarabaeidae Genus: Ateuchus Ateuchus adalah genus kumbang yang tergolong famili Scarabaeidae. Kumbang ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Kumbang dalam genus ini memiliki antena yang terdiri dari plat yang disebut lamela. Referensi Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., B...

 

 

Artikel ini perlu diterjemahkan dari bahasa Melayu ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Melayu. Jika halaman ini ditujukan untuk komunitas bahasa Melayu, halaman itu harus dikontribusikan ke Wikipedia bahasa Melayu. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak menyali...

 

 

Endomorphin-1 Names IUPAC name (2S)-1-[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]-N-[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pyrrolidine-2-carboxamide Other names Tyr-Pro-Trp-Phe-NH2; L-Tyrosyl-L-prolyl-L-tryptophyl-L-phenylalaninamide Identifiers CAS Number 189388-22-5 3D model (JSmol) Interactive image Abbreviations YPWF ChEBI CHEBI:177580 ChEMBL ChEMBL316446 ChemSpider 4470614 IUPHAR/BPS 1623 PubChem CID 5311080 InChI InChI=1S/C34H38N6O5/c...

Government of Great Britain Second Rockingham ministryMarch–July 1782Rockingham (after Joshua Reynolds)Date formed27 March 1782 (1782-03-27)Date dissolved1 July 1782 (1782-07-01)People and organisationsMonarchGeorge IIIPrime MinisterLord RockinghamTotal no. of members16 appointmentsMember partyRockingham WhigsStatus in legislatureMajority234 / 449Opposition partyGrenvillitesHistoryLegislature term(s)15th GB ParliamentPredecessorNorth ministrySuccessorShelburne ...

 

 

Pour les articles homonymes, voir Chardin. Pierre Teilhard de ChardinFonctionsConseiller (en)Wenner-Gren Foundation (d)1951 - 10 avril 1955Directeur de recherche au CNRSÉcole pratique des hautes études1947 - décembre 1951Président de la Société géologique de France1926Georges Mouret (d)Jules Lambert (d)Maître de conférencesInstitut catholique de Paris1922-1925EnseignantCollège de la Sainte-Famille1905-1908BiographieNaissance 1er mai 1881Château de Sarcenat (d) (Orcines)Décès 10 ...

 

 

Pada tahun 2008 telah ditemukan lebih dari 1000 lokasi atau situs Peradaban Lembah Sungai Indus,[1] di mana 406 situs terletak di Pakistan dan 616 situs di India,[2] sementara beberapa situs di Afganistan diyakini merupakan koloni perdagangan.[3] Daftar penemuan modern Daftar lokasi Lembah Indus Peradaban yang telah ditemukan: Situs Distrik Provinsi/Negara bagian Negara Ekskavasi/Penemuan Foto Alamgirpur Meerut District Uttar Pradesh India Impresi kain pada pipa Amri, ...

19th-century British Royal Navy bomb vessel For other ships with the same name, see HMS Fury. Lithograph depicting HMS Hecla (1815)and HMS Fury, by Arthur Parsey, 1823 History United Kingdom NameHMS Fury Ordered5 June 1813 BuilderMrs Mary Ross, Rochester, Kent Laid downSeptember 1813 Launched4 April 1814 ReclassifiedConverted to Arctic discovery vessel, 1821 FateBilged in Prince Regent Inlet, Baffin Island and abandoned, 25 August 1825 General characteristics Class and typeHecla-cla...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

Chirag ShettyInformasi pribadiNama lahirChirag Chandrashekhar ShettyKebangsaan IndiaLahir4 Juli 1997 (umur 26)Mumbai, IndiaTinggi186 m (610 ft 3 in)Berat62 kg (137 pon)PeganganKananGanda putra & campuranPeringkat tertinggi7 (MD 12 November 2019) 413 (XD 27 Agustus 2015)Peringkat saat ini7 (8 November 2022[1])Profil di BWF Chirag Chandrashekhar Shetty (lahir 4 Juli 1997) adalah pemain bulu tangkis putra berkewarganegaraan India.[2] ...

American pay television channel This article is about the TV channel in the United States and Canada. For other uses, see TLC. Television channel TLCCountryUnited StatesBroadcast areaUnited StatesCanadaHeadquartersSilver Spring, Maryland, United StatesProgrammingLanguage(s)EnglishSpanish (via SAP audio track)Picture format1080i HDTV(downscaled to letterboxed 480i for the SDTV feed)OwnershipOwnerWarner Bros. DiscoveryParentWarner Bros. Discovery NetworksSister channels List Adult Swim American...

 

 

Thomas CoutureThomas CoutureLahirThomas Couture(1815-12-21)21 Desember 1815Senlis, Oise, PrancisMeninggal30 Maret 1879 ( 1879 -03-30) (umur 63)Villiers-le-Bel, Val-d'Oise, PrancisMakamPère Lachaise Cemetery, Paris, PrancisKebangsaanPrancisPendidikanÉcole des Arts et MétiersDikenal atasLukisan, PenulisKarya terkenalRomans in the Decadence of the Empire Makam Thomas Couture di Pemakaman Père-Lachaise, Paris (divisi 4) Thomas Couture, (21 Desember 1815 – 30 Maret 1879)&...

 

 

Geological process at mid-ocean ridges Age of oceanic lithosphere; youngest (light colour) is along spreading centers Seafloor spreading, or seafloor spread, is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener and Alexander du Toit of continental drift postulated that continents in motion plowed through the fixed and immovable seafloor. The id...

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表�...

 

 

Village in Wisconsin, United StatesBowler, WisconsinVillageDowntown BowlerLocation of Bowler in Shawano County, Wisconsin.Coordinates: 44°51′45″N 88°58′51″W / 44.86250°N 88.98083°W / 44.86250; -88.98083Country United StatesState WisconsinCountyShawanoArea[1] • Total1.04 sq mi (2.69 km2) • Land1.04 sq mi (2.69 km2) • Water0.00 sq mi (0.00 km2)Elevation[2&#...

 

 

Beberapa atau seluruh referensi dari artikel ini mungkin tidak dapat dipercaya kebenarannya. Bantulah dengan memberikan referensi yang lebih baik atau dengan memeriksa apakah referensi telah memenuhi syarat sebagai referensi tepercaya. Referensi yang tidak benar dapat dihapus sewaktu-waktu. Satuan Tugas Pemberantasan Mafia Hukum (disingkat Satgas PMH) adalah lembaga pemerintah yang bertanggung jawab langsung kepada Presiden Republik Indonesia melalui Unit Kerja Presiden Bidang Pengawasan dan ...

زئيف جابوتينسكي زئيف جابوتينسكي معلومات شخصية اسم الولادة فلاديمير يفغنييفيتش جابوتينسكي الميلاد 17 أكتوبر 1880(1880-10-17)أوديسا،[1]  الإمبراطورية الروسية الوفاة 3 أغسطس 1940 (59 سنة)نيويورك،  الولايات المتحدة سبب الوفاة مرض قلبي وعائي  مكان الدفن 1940–1964: مقبرة مونتفيور...

 

 

Australian actress (1949–2013) Penne Hackforth-JonesBornPenelope Beatrix Hackforth-Jones(1949-08-05)5 August 1949Greenwich, Connecticut, U.S.Died17 May 2013(2013-05-17) (aged 63)Melbourne, Victoria, AustraliaOccupation(s)Actress, biographer Penne Hackforth-Jones (5 August 1949 – 17 May 2013)[1] was an American-born Australian actress and biographer.[2][3][4][5] Early life Penelope Beatrix Hackforth-Jones[1] was born in Augu...

 

 

British-Canadian children's animated television series Not to be confused with Bits and Bobs. This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2023) Bitz & BobCreated byDaniel BaysDirected byKitty TaylorTheme music composerSanj SenOpening themeWork it OutComposerMick CookeCountry of originUnited KingdomCanadaOriginal languageEnglishNo. of seasons2No. of episodes44ProductionExecutive producers Vanessa Amberleig...

L'esposizione nazionale italiana fu un ciclo di esposizioni che si tennero sul suolo italiano dall'anno 1861, inizialmente a cadenza decennale, durante il Regno d'Italia. Scopo delle esposizioni fu di costruire e rafforzare lo spirito nazionale e mettere in mostra le più avanzate produzioni nei vari campi dell'industria e del commercio. Alle aziende venivano conferiti riconoscimenti come diplomi, medaglie d'oro o d'argento. Le esposizioni nazionali ebbero un ruolo importante nella storia del...

 

 

البركة العاكسة في تاج محل. البركة العاكسة هي فن من فنون العمارة، غالباً ما تستخدم في الحدائق والمتنزهات.[1][2][3] وعادةً ما تكون في بركة مياه، دون عوائق من النافورة، بحيث يكون سطح الماء عاكس. التصميم غالباً ما يتم تصميم البرك العاكسة مع أرضية الحوض الخارجي على حافة...