Conference matrix

In mathematics, a conference matrix (also called a C-matrix) is a square matrix C with 0 on the diagonal and +1 and −1 off the diagonal, such that CTC is a multiple of the identity matrix I. Thus, if the matrix has order n, CTC = (n−1)I. Some authors use a more general definition, which requires there to be a single 0 in each row and column but not necessarily on the diagonal.[1][2]

Conference matrices first arose in connection with a problem in telephony.[3] They were first described by Vitold Belevitch, who also gave them their name. Belevitch was interested in constructing ideal telephone conference networks from ideal transformers and discovered that such networks were represented by conference matrices, hence the name.[4] Other applications are in statistics,[5] and another is in elliptic geometry.[6]

For n > 1, there are two kinds of conference matrix. Let us normalize C by, first (if the more general definition is used), rearranging the rows so that all the zeros are on the diagonal, and then negating any row or column whose first entry is negative. (These operations do not change whether a matrix is a conference matrix.) Thus, a normalized conference matrix has all 1's in its first row and column, except for a 0 in the top left corner, and is 0 on the diagonal. Let S be the matrix that remains when the first row and column of C are removed. Then either n is evenly even (a multiple of 4) and S is skew-symmetric (as is the normalized C if its first row is negated), or n is oddly even (congruent to 2 modulo 4) and S is symmetric (as is the normalized C).

Symmetric conference matrices

If C is a symmetric conference matrix of order n > 1, then not only must n be congruent to 2 mod 4 but also n − 1 must be a sum of two squares;[7] there is a clever proof by elementary matrix theory in van Lint and Seidel.[6] n will always be the sum of two squares if n − 1 is a prime power.[8]

Given a symmetric conference matrix, the matrix S can be viewed as the Seidel adjacency matrix of a graph. The graph has n − 1 vertices, corresponding to the rows and columns of S, and two vertices are adjacent if the corresponding entry in S is negative. This graph is strongly regular of the type called (after the matrix) a conference graph.

The existence of conference matrices of orders n allowed by the above restrictions is known only for some values of n. For instance, if n = q + 1 where q is a prime power congruent to 1 mod 4, then the Paley graphs provide examples of symmetric conference matrices of order n, by taking S to be the Seidel matrix of the Paley graph. The first few possible orders of a symmetric conference matrix are n = 2, 6, 10, 14, 18, (not 22, since 21 is not a sum of two squares), 26, 30, (not 34 since 33 is not a sum of two squares), 38, 42, 46, 50, 54, (not 58), 62 (sequence A000952 in the OEIS); for every one of these, it is known that a symmetric conference matrix of that order exists. Order 66 seems to be an open problem.

Examples

The essentially unique conference matrix of order 6 is given by

.

All other conference matrices of order 6 are obtained from this one by flipping the signs of some row and/or column (and by taking permutations of rows and/or columns, according to the definition in use).

One conference matrix of order 10 is

.

Skew-symmetric conference matrices

Skew-symmetric matrices can also be produced by the Paley construction. Let q be a prime power with residue 3 mod 4. Then there is a Paley digraph of order q which leads to a skew-symmetric conference matrix of order n = q + 1. The matrix is obtained by taking for S the q × q matrix that has a +1 in position (i, j ) and −1 in position (j, i) if there is an arc of the digraph from i to j, and zero diagonal. Then C constructed as above from S, but with the first row all negative, is a skew-symmetric conference matrix.

This construction solves only a small part of the problem of deciding for which evenly even numbers n there exist skew-symmetric conference matrices of order n.

Generalizations

Sometimes a conference matrix of order n is just defined as a weighing matrix of the form W(n, n−1), where W(n,w) is said to be of weight w > 0 and order n if it is a square matrix of size n with entries from {−1, 0, +1} satisfying W W T = w I.[2] Using this definition, the zero element is no more required to be on the diagonal, but it is easy to see that still there must be exactly one zero element in each row and column. For example, the matrix

would satisfy this relaxed definition, but not the more strict one requiring the zero elements to be on the diagonal.

A conference design is a generalization of conference matrices to non-rectangular matrices. A conference design C is an matrix, with entries from {−1, 0, +1} satisfying , where is the identity matrix and at most one zero in each row. The foldover designs of conference designs can be used as definitive screening designs.[9][10]

Telephone conference circuits

The trivial 2-port conference network

Belevitch obtained complete solutions for conference matrices for all values of n up to 38 and provided circuits for some of the smaller matrices. An ideal conference network is one where the loss of signal is entirely due to the signal being split between multiple conference subscriber ports. That is, there are no dissipation losses within the network. The network must contain ideal transformers only and no resistances. An n-port ideal conference network exists if and only if there exists a conference matrix of order n. For instance, a 3-port conference network can be constructed with the well-known hybrid transformer circuit used for 2-wire to 4-wire conversion in telephone handsets and line repeaters. However, there is no order 3 conference matrix and this circuit does not produce an ideal conference network. A resistance is needed for matching which dissipates signal, or else signal is lost through mismatch.[11]

As mentioned above, a necessary condition for a conference matrix to exist is that n−1 must be the sum of two squares. Where there is more than one possible sum of two squares for n−1 there will exist multiple essentially different solutions for the corresponding conference network. This situation occurs at n of 26 and 66. The networks are particularly simple when n−1 is a perfect square (n = 2, 10, 26, ...).[12]

Notes

  1. ^ Greig Malcolm (2006). "On the coexistence of conference matrices and near resolvable 2-(2k+1,k,k-1) designs". Journal of Combinatorial Theory, Series A. 113 (4): 703–711. doi:10.1016/j.jcta.2005.05.005.
  2. ^ a b Gropp Harald (2004). "More on orbital matrices". Electronic Notes in Discrete Mathematics. 17: 179–183. doi:10.1016/j.endm.2004.03.036.
  3. ^ Belevitch 1950, pp. 231–244
  4. ^ Colbourn & Dinitz 2007, p. 19
    van Lint & Wilson 2001, p. 98
    Stinson 2004, p. 200
  5. ^ Raghavarao, D. (1959). "Some optimum weighing designs". Annals of Mathematical Statistics. 30 (2): 295–303. doi:10.1214/aoms/1177706253. MR 0104322.
  6. ^ a b van Lint J.H., Seidel J.J. (1966). "Equilateral point sets in elliptic geometry". Indagationes Mathematicae. 28: 335–348.
  7. ^ Belevitch 1950, p. 240
  8. ^ Stinson 2004, p. 78
  9. ^ Xiao, Lin & Bai 2012
  10. ^ Schoen, Eendebak & Goos 2018
  11. ^ Belevitch 1950, pp. 240–2
  12. ^ Belevitch 1950, p. 242

References

Further reading

  • Balonin, N.A.; Seberry, J. (2014). "A review and new symmetric conference matrices" (PDF). Informatsionno-upravliaiushchie sistemy. 71 (4): 2–7. RIS 91975 – via Research Online, University of Wollongong. Appendix lists all known and possible conference matrices up to 1002.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Géza BalkayLahir(1952-09-05)5 September 1952Budapest, HungariaMeninggal3 April 2006(2006-04-03) (umur 53)PekerjaanPemeranTahun aktif1976-2006 Géza Balkay (5 September 1952 – 3 April 2006) adalah seorang pemeran televisi dan...

 

Akademi Seni dan Desain Indonesia SurakartaNama lainASDI SurakartaJenisPerguruan Tinggi SwastaDidirikan4 Agustus 1999AlamatJl. Garuda Mas No.3, Pabelan, Kartasura, Kabupaten Sukoharjo, Jawa Tengah, 57162, IndonesiaBahasaBahasa IndonesiaSitus webasdi.ac.id Akademi Seni dan Desain Indonesia Surakarta (disingkat ASDI Surakarta) adalah salah satu perguruan tinggi swasta di Indonesia yang berlokasi di Kabupaten Sukoharjo, Jawa Tengah. Pimpinan Unsur pimpinan ASDI Surakarta terdiri dari: Direktur: ...

 

Wakil Wali Kota SemarangPetahanaIr. Hj. Hevearita Gunaryanti Rahayu, M.Sos.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk2000Pejabat pertamaDrs. H. Muchafif Adi SubrataSitus websemarangkota.go.id Wakil Wali Kota Semarang adalah posisi kedua yang memerintah Kota Semarang di bawah Wali Kota Semarang. Posisi ini pertama kali dibentuk pada tahun 2000. Daftar No Wakil Wali Kota Mulai Jabatan Akhir Jabatan Prd. Ket. Wali Kota 1 Drs. H.Muchatif Adi Subrata 2000 2005 1 H.Sukawi SutaripS.H., S...

This article is about the Algerian city. For the city in Djibouti, see Anaba, Djibouti. This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (August 2017) (Learn how and when to remove this template message) City in Annaba Province, AlgeriaAnnaba عنّابةCityLocation of Annaba, Algeria within Annaba ProvinceAnnabaLocation within AlgeriaShow map of AlgeriaAnnabaAnnaba (Africa)Show map of AfricaC...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

House om Farum, Denmark FarumgårdGeneral informationArchitectural styleNaroqueLocationSøvej 8 3520 FarumCountryDenmarkCoordinates55°48′21.54″N 12°21′38.64″E / 55.8059833°N 12.3607333°E / 55.8059833; 12.3607333Completed1706Design and constructionArchitect(s)François Dieussart Farumgård is a former manor house overlooking Farum Lake at Farum, Furesø Municipality, in the north-western outskirts of Copenhagen, Denmark. It is located just east of Farum Chur...

Institut d'histoire de la Révolution françaiseHistoireFondation 27 octobre 1937Dissolution 1er janvier 2016Fusionné dans Institut d'histoire moderne et contemporaineCadreType Laboratoire, bibliothèqueDomaine d'activité Histoire de la Révolution françaiseSiège Paris (17, rue de la Sorbonne)Pays  FranceCoordonnées 48° 50′ 56″ N, 2° 20′ 35″ EOrganisationFondateur Georges LefebvreOrganisation mère Université Paris-I-Panthéon-SorbonneSite we...

 

United States historic placeHaddon Fortnightly Club HouseU.S. National Register of Historic PlacesNew Jersey Register of Historic Places Show map of Camden County, New JerseyShow map of New JerseyShow map of the United StatesLocation301 King's Highway, Haddonfield, New JerseyCoordinates39°53′59″N 75°1′45″W / 39.89972°N 75.02917°W / 39.89972; -75.02917Area0.2 acres (0.081 ha)Built1857NRHP reference No.72000771[1]NJRHP No.972[...

 

←→Декабрь Пн Вт Ср Чт Пт Сб Вс             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31           2024 год Содержание 1 Праздники и памятные дни 1.1 Национальные 1.2 Религиозные 1.3 Именины 2 События 2.1 До XX века 2.2 XX век 2.3 XXI век 3 Родились 3.1 До XIX ве�...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pala, Kerala – news · newspapers · books · scholar · JSTOR (May 2012) (Learn how and when to remove this me...

 

Catalogue of open clusters made by Swedish astronomer Per Collinder Collinder catalogueCollinder 399, a prominent asterism in the constellation Vulpecula.  Related media on Commons[edit on Wikidata] The Collinder catalogue is a catalogue of 471 open clusters compiled by Swedish astronomer Per Collinder. It was published in 1931 as an appendix to Collinder's paper On structural properties of open galactic clusters and their spatial distribution.[1] The catalogue contains 452 o...

 

Champagné-le-SeccomuneLocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementMontmorillon CantoneCivray TerritorioCoordinate46°11′N 0°12′E / 46.183333°N 0.2°E46.183333; 0.2 (Champagné-le-Sec)Coordinate: 46°11′N 0°12′E / 46.183333°N 0.2°E46.183333; 0.2 (Champagné-le-Sec) Superficie8 km² Abitanti214[1] (2009) Densità26,75 ab./km² Altre informazioniCod. postale86510 Fuso orarioUTC+...

العلاقات البوتسوانية الوسط أفريقية بوتسوانا جمهورية أفريقيا الوسطى   بوتسوانا   جمهورية أفريقيا الوسطى تعديل مصدري - تعديل   العلاقات البوتسوانية الوسط أفريقية هي العلاقات الثنائية التي تجمع بين بوتسوانا وجمهورية أفريقيا الوسطى.[1][2][3][4][5&#...

 

George OstrogorskyGeorgije Ostrogorski. SANU.Lahir(1902-01-19)19 Januari 1902Saint Petersburg, RusiaMeninggal24 Oktober 1976(1976-10-24) (umur 74)Belgrade, SerbiaKebangsaan YugoslaviaAlmamaterUniversitas HeidelbergKarier ilmiahBidangStudi Romawi TimurPembimbing akademikKarl JaspersHeinrich RickertAlfred WeberLudwig CurtiusPercy Ernst Schramm George Alexandrovič Ostrogorsky (bahasa Rusia: Георгий Александрович Острогорский, juga dikenal dengan na...

 

Disambiguazione – Se stai cercando altri significati, vedi Musica leggera (disambigua). Musica leggeraOrigini stilistichePopular musicMusica d'autoreMusica classica Origini culturaliSi definì in seguito all'affermazione delle logiche di mercato in campo musicale Strumenti tipicivoce, pianoforte, tastiere, batteria, percussioni, chitarra acustica, basso, archi, contrabbasso, sax, tromba PopolaritàDalla sua nascita fino ai giorni nostri SottogeneriPop rock - Country pop - Synthpop - Elettr...

American musician Brant BjorkBrant Bjork at the Burg Herzberg Festival, 2024Background informationBorn (1973-03-19) March 19, 1973 (age 51)[1]Redlands, California, U.S.[2]OriginPalm Springs, California, U.S.GenresStoner rockdesert rockheavy metalhardcore punkOccupation(s) Musician singer songwriter record producer Instrument(s)DrumsvocalsguitarbassDiscographyBrant Bjork discographyYears active1987–presentLabels El Camino Duna Man's Ruin Low Desert Punk Napalm Heavy Psyc...

 

Barbie Dreamssingolo discograficoScreenshot tratto dal video del branoArtistaNicki Minaj Pubblicazione14 agosto 2018 Durata4:39 Album di provenienzaQueen GenereHip hop EtichettaYoung Money, Cash Money, Republic Records ProduttoreMel and Mus, Ringo FormatiDownload digitale, streaming CertificazioniDischi d'argento Regno Unito[1](vendite: 200 000+) Dischi d'oro Australia[2](vendite: 35 000+) Brasile[3](vendite: 20 000+) Stati ...

 

Disambiguazione – Se stai cercando lo scultore italiano, vedi Giuseppe Mozzanica. Mozzanicacomune Mozzanica – VedutaLa Torre Civica, simbolo distintivo del paese LocalizzazioneStato Italia Regione Lombardia Provincia Bergamo AmministrazioneSindacoSimone Piana (lista civica Per Mozzanica) dal 10-6-2024 TerritorioCoordinate45°28′33.87″N 9°41′21.33″E45°28′33.87″N, 9°41′21.33″E (Mozzanica) Altitudine102[1] m s.l.m. Superficie9...

Official in Transylvania, 12th–16th century This article is about the royal governors of Transylvania. For the rulers of the Principality of Transylvania after 1570, see Prince of Transylvania. Part of a series onGreat Officers of Statein theKingdom of Hungary Palatine Judge royal Voivode of Transylvania Ban of Croatia Ban of Slavonia Ban of Severin Count of the Székelys Master of the treasury Master of the horse Master of the cupbearers Master of the stewards Master of the doorkeepers Isp...

 

Period of Ancient Egyptian history (1700–1550 BC) The Second Intermediate Periodc. 1700–1550 BCThe political situation in the Second Intermediate Period of Egypt (c. 1650 – c. 1550 BC)Capital Itjtawyc.1803 – 1677 BC13th Dynasty Avarisc.1725 – 1535 BC14th and 15th Dynasties Thebesc.1677 – 1600 BC13th, 16th and 17th Dynasties Abydosc.1650 – 1600 BCAbydos Dynasty Religion Ancient Egyptian religionDemonym(s)Egyptians and HyksosGovernmentMonarchyPharaoh �...