Unipotent

In mathematics, a unipotent element[1] r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1.

The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.

In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent.

Definition

Definition with matrices

Consider the group of upper-triangular matrices with 's along the diagonal, so they are the group of matrices[2]

Then, a unipotent group can be defined as a subgroup of some . Using scheme theory the group can be defined as the group scheme

and an affine group scheme is unipotent if it is a closed group scheme of this scheme.

Definition with ring theory

An element x of an affine algebraic group is unipotent when its associated right translation operator, rx, on the affine coordinate ring A[G] of G is locally unipotent as an element of the ring of linear endomorphism of A[G]. (Locally unipotent means that its restriction to any finite-dimensional stable subspace of A[G] is unipotent in the usual ring-theoretic sense.)

An affine algebraic group is called unipotent if all its elements are unipotent. Any unipotent algebraic group is isomorphic to a closed subgroup of the group of upper triangular matrices with diagonal entries 1, and conversely any such subgroup is unipotent. In particular any unipotent group is a nilpotent group, though the converse is not true (counterexample: the diagonal matrices of GLn(k)).

For example, the standard representation of on with standard basis has the fixed vector .

Definition with representation theory

If a unipotent group acts on an affine variety, all its orbits are closed, and if it acts linearly on a finite-dimensional vector space then it has a non-zero fixed vector. In fact, the latter property characterizes unipotent groups.[2] In particular, this implies there are no non-trivial semisimple representations.

Examples

Un

Of course, the group of matrices is unipotent. Using the lower central series

where

and

there are associated unipotent groups. For example, on , the central series are the matrix groups

, , , and

given some induced examples of unipotent groups.

Gan

The additive group is a unipotent group through the embedding

Notice the matrix multiplication gives

hence this is a group embedding. More generally, there is an embedding from the map

Using scheme theory, is given by the functor

where

Kernel of the Frobenius

Consider the functor on the subcategory , there is the subfunctor where

so it is given by the kernel of the Frobenius endomorphism.

Classification of unipotent groups over characteristic 0

Over characteristic 0 there is a nice classification of unipotent algebraic groups with respect to nilpotent Lie algebras. Recall that a nilpotent Lie algebra is a subalgebra of some such that the iterated adjoint action eventually terminates to the zero-map. In terms of matrices, this means it is a subalgebra of , the matrices with for .

Then, there is an equivalence of categories of finite-dimensional nilpotent Lie algebras and unipotent algebraic groups.[2]page 261 This can be constructed using the Baker–Campbell–Hausdorff series , where given a finite-dimensional nilpotent Lie algebra, the map

gives a Unipotent algebraic group structure on .

In the other direction the exponential map takes any nilpotent square matrix to a unipotent matrix. Moreover, if U is a commutative unipotent group, the exponential map induces an isomorphism from the Lie algebra of U to U itself.

Remarks

Unipotent groups over an algebraically closed field of any given dimension can in principle be classified, but in practice the complexity of the classification increases very rapidly with the dimension, so people[who?] tend to give up somewhere around dimension 6.

Unipotent radical

The unipotent radical of an algebraic group G is the set of unipotent elements in the radical of G. It is a connected unipotent normal subgroup of G, and contains all other such subgroups. A group is called reductive if its unipotent radical is trivial. If G is reductive then its radical is a torus.

Decomposition of algebraic groups

Algebraic groups can be decomposed into unipotent groups, multiplicative groups, and abelian varieties, but the statement of how they decompose depends upon the characteristic of their base field.

Characteristic 0

Over characteristic 0 there is a nice decomposition theorem of a commutative algebraic group relating its structure to the structure of a linear algebraic group and an Abelian variety. There is a short exact sequence of groups[3]page 8

where is an abelian variety, is of multiplicative type (meaning, is, geometrically, a product of tori and algebraic groups of the form ) and is a unipotent group.

Characteristic p

When the characteristic of the base field is p there is an analogous statement[3] for an algebraic group : there exists a smallest subgroup such that

  1. is a unipotent group
  2. is an extension of an abelian variety by a group of multiplicative type.
  3. is unique up to commensurability in and is unique up to isogeny.

Jordan decomposition

Any element g of a linear algebraic group over a perfect field can be written uniquely as the product g = gu  gs of commuting unipotent and semisimple elements gu and gs. In the case of the group GLn(C), this essentially says that any invertible complex matrix is conjugate to the product of a diagonal matrix and an upper triangular one, which is (more or less) the multiplicative version of the Jordan–Chevalley decomposition.

There is also a version of the Jordan decomposition for groups: any commutative linear algebraic group over a perfect field is the product of a unipotent group and a semisimple group.

See also

References

  1. ^ "Unipotent element - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2024-09-23.
  2. ^ a b c Milne, J. S. Linear Algebraic Groups (PDF). pp. 252–253, Unipotent algebraic groups.
  3. ^ a b Brion, Michel (2016-09-27). "Commutative algebraic groups up to isogeny". arXiv:1602.00222 [math.AG].

Read other articles:

Evolusi wilayah Tiongkok sepanjang sejarah Tiongkok. Iredentisme Tiongkok mengacu pada klaim iredentis yang dibuat oleh Republik Tiongkok[a] dan kemudian oleh Republik Rakyat Tiongkok kepada wilayah bekas Kekaisaran Tiongkok. Lihat pula Portal Tiongkok Kolonialisme Ekspansionisme Tiongkok Nasionalisme Tiongkok Sauvinisme Han Sentimen anti-Tiongkok Sinikisasi Sinosentrisme Sistem upeti Tiongkok Pax Sinica Zaman keemasan Tiongkok Sengketa wilayah Republik Rakyat Tiongkok Catatan ^ Repub...

 

2013 Chinese filmLove Will Tear Us ApartDirected byLi WeiranStarringFeng Shaofeng Ni NiProductioncompanyLe Vision PicturesRelease date October 12, 2013 (2013-10-12) CountryChinaLanguageMandarinBox office$13,690,000[1] Love Will Tear Us Apart (Chinese: 我想和你好好的) is a 2013 Chinese film directed by Li Weiran and starring Feng Shaofeng and Ni Ni.[2] Synopsis A simple but heartbreaking love story. An ordinary copy director Liang Liang falls in love w...

 

4th President of Iceland (1980–96) This is an Icelandic name. The last name is patronymic, not a family name; this person is referred to by the given name Vigdís. Her ExcellencyVigdís FinnbogadóttirVigdís in 19854th President of IcelandIn office1 August 1980 – 1 August 1996Prime MinisterGunnar ThoroddsenSteingrímur HermannssonÞorsteinn PálssonDavíð OddssonPreceded byKristján EldjárnSucceeded byÓlafur Ragnar Grímsson Personal detailsBorn (1930-04-15) 15 April 1930 (ag...

История права России — история права Российской Федерации, правовой культуры российского общества и правовой практики в России. Содержание 1 История права Древней Руси 2 История права Русского царства 3 История права Российской империи 4 История права Временного правит�...

 

1940s British light aircraft J/2 Arrow Role Touring aircraftType of aircraft Manufacturer Auster Aircraft Limited First flight 1945 Introduction 1945 Status Two airworthy in UK in 2009 Primary user Private pilot owners Number built 44 Variants Auster J-4 The Auster J/2 Arrow is a 1940s British single-engined two-seat high-wing touring monoplane built by Auster Aircraft Limited at Rearsby, Leicestershire, England. History The Arrow was designed as a successor to the pre-war Taylorcraft Pl...

 

Pays qui ont le suffixe -stan dans leur nom autre pays dont au moins une région possède le suffixe -stan dans son nom Le suffixe -stan désigne un lieu en persan[1]. Il apparaît dans de nombreux noms de pays ou région d'Asie centrale et d'Asie du sud. Étymologie Le suffixe -stan (écrit ـستان dans l'alphabet arabe, -stān) désigne un lieu en persan[1]. Le terme est apparenté au pachto -tun et à son équivalent indo-aryen -sthāna (स्थान en devanagari, prononcé st̪ʰa�...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Questa voce sugli argomenti allenatori di pallacanestro statunitensi e cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Paul Westphal Paul Westphal nel 1975 Nazionalità  Stati Uniti Altezza 193 cm Peso 88 kg Pallacanestro Ruolo GuardiaAllenatore Termine carriera 1984 - giocatore2016 - allenatore Hall of fame Naismith Hall of Fame (2019) CarrieraGiovanili Aviation Hi...

 

Defunct low-cost airline of the United States (1994–2002) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2010) (Learn how and when to remove this message) Vanguard Airlines IATA ICAO Callsign NJ VGD VANGUARD AIR Founded1994 (1994)Ceased operationsJuly 29, 2002 (2002-07-29)HubsKansas City International AirportFocus citiesChicago ...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Đồ thị vẽ a và b là hai đường thẳng song song Hình họcHình chiếu một mặt cầu lên mặt phẳng. Đại cươngLịch sử Phân nhánh Euclid Phi Euclid Elliptic Cầu Hyperbol Hình h...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

ChiancheKomuneComune di ChiancheLokasi Chianche di Provinsi AvellinoNegaraItaliaWilayah CampaniaProvinsiAvellino (AV)Luas[1] • Total6,61 km2 (2,55 sq mi)Ketinggian[2]356 m (1,168 ft)Populasi (2016)[3] • Total551 • Kepadatan83/km2 (220/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos83010Kode area telepon0825Situs webhttp://www.comune.chianche.av.it Chianche adalah sebu...

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

1999 video game 1999 video gameTraitors GateNorth American box artDeveloper(s)Daydream SoftwarePublisher(s)DreamCatcher Interactive (North America)FX Interactive (Spain)Hilad Corporation (Australia)Éditions Profil (France)Platform(s)Macintosh, WindowsReleaseSWE: September 1999 SP: December 16, 1999 NA: May 15, 2000Genre(s)Graphic adventureMode(s)Single-player Traitors Gate is a 1999 graphic adventure game developed by Daydream Software. Set in a reproduction of the Tower of London, it follow...

This is the talk page for discussing WikiProject Puerto Rico and anything related to its purposes and tasks. Put new text under old text. Click here to start a new topic. New to Wikipedia? Welcome! Learn to edit; get help. Assume good faith Be polite and avoid personal attacks Be welcoming to newcomers Seek dispute resolution if needed ShortcutsWT:PURWT:WPPR This project page does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Cou...

 

American College of SofiaInformasiMaskotBurung foniksAlamatLokasiFloyd Black Lane, 1799 Mladost 2, SofiaSitus webwww.acs.bgMoto American College of Sofia (ACS) (bahasa Bulgaria: Американски колеж в София) adalah sekolah yang berlokasi di Sofia, Bulgaria. Sekolah ini didirikan pada 1860 dan dianggap sebagai lembaga pendidikan Amerika tertua di luar Amerika Serikat.[1] Metode pedagogis Amerika digunakan di sekolah tersebut dan bahasa pengantar utama adalah bah...

 

The 2012 Vuelta a España was the 67th edition of the Vuelta a España, one of the cycling's Grand Tours. The Vuelta a España features 198 riders competing from 22 cycling teams; the race took place from 18 August to 9 September, starting in Pamplona and finishing in Madrid. Teams All eighteen UCI ProTeams were automatically invited and were obliged to attend the race. Four UCI Professional Continental teams were given wildcard places into the race, to complete a 22-team peloton. The 22 tea...

1945 film by Anthony Mann The Great FlamarionTheatrical release posterDirected byAnthony MannScreenplay byHeinz HeraldRichard WeilAnne WigtonBased onthe short-story Big Shotby Vicki BaumAnne WigtonProduced byW. Lee WilderStarringErich von StroheimMary Beth HughesCinematographyJames S. Brown Jr.Edited byJohn F. Link, Sr.Music byAlexander LászlóColor processBlack and whiteProductioncompanyW. Lee Wilder ProductionsDistributed byRepublic PicturesRelease date March 30, 1945 (1945-...

 

NHL Commissioner Gary BettmanBettman in November 20161st Commissioner of the National Hockey LeagueIncumbentAssumed office February 1, 1993Preceded byGil Stein (as President) Personal detailsBornGary Bruce Bettman (1952-06-02) June 2, 1952 (age 72)Queens, New York, U.S.Spouse Shelli Bettman ​(m. 1976)​[1]Children3RelativesJeffrey Pollack (half-brother)Alma mater Cornell University (BA) New York University (JD) AwardsHockey Hall of Fame (2018) Gary...