In terms of the entries of the matrix, if denotes the entry in the -th row and -th column, then the skew-symmetric condition is equivalent to
Example
The matrix
is skew-symmetric because
Properties
Throughout, we assume that all matrix entries belong to a field whose characteristic is not equal to 2. That is, we assume that 1 + 1 ≠ 0, where 1 denotes the multiplicative identity and 0 the additive identity of the given field. If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix.
The sum of two skew-symmetric matrices is skew-symmetric.
A scalar multiple of a skew-symmetric matrix is skew-symmetric.
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.
If is a real skew-symmetric matrix and is a real eigenvalue, then , i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real.
If is a real skew-symmetric matrix, then is invertible, where is the identity matrix.
As a result of the first two properties above, the set of all skew-symmetric matrices of a fixed size forms a vector space. The space of skew-symmetric matrices has dimension
Let denote the space of matrices. A skew-symmetric matrix is determined by scalars (the number of entries above the main diagonal); a symmetric matrix is determined by scalars (the number of entries on or above the main diagonal). Let denote the space of skew-symmetric matrices and denote the space of symmetric matrices. If then
Notice that and This is true for every square matrix with entries from any field whose characteristic is different from 2. Then, since and
where denotes the direct sum.
Denote by the standard inner product on The real matrix is skew-symmetric if and only if
This is also equivalent to for all (one implication being obvious, the other a plain consequence of for all and ).
Since this definition is independent of the choice of basis, skew-symmetry is a property that depends only on the linear operator and a choice of inner product.
skew symmetric matrices can be used to represent cross products as matrix multiplications.
Furthermore, if is a skew-symmetric (or skew-Hermitian) matrix, then
for all .
Determinant
Let be a skew-symmetric matrix. The determinant of satisfies
In particular, if is odd, and since the underlying field is not of characteristic 2, the determinant vanishes. Hence, all odd dimension skew symmetric matrices are singular as their determinants are always zero. This result is called Jacobi’s theorem, after Carl Gustav Jacobi (Eves, 1980).
The even-dimensional case is more interesting. It turns out that the determinant of for even can be written as the square of a polynomial in the entries of , which was first proved by Cayley:[3]
This polynomial is called the Pfaffian of and is denoted . Thus the determinant of a real skew-symmetric matrix is always non-negative. However this last fact can be proved in an elementary way as follows: the eigenvalues of a real skew-symmetric matrix are purely imaginary (see below) and to every eigenvalue there corresponds the conjugate eigenvalue with the same multiplicity; therefore, as the determinant is the product of the eigenvalues, each one repeated according to its multiplicity, it follows at once that the determinant, if it is not 0, is a positive real number.
The number of distinct terms in the expansion of the determinant of a skew-symmetric matrix of order was considered already by Cayley, Sylvester, and Pfaff. Due to cancellations, this number is quite small as compared the number of terms of the determinant of a generic matrix of order , which is . The sequence (sequence A002370 in the OEIS) is
The number of positive and negative terms are approximatively a half of the total, although their difference takes larger and larger positive and negative values as increases (sequence A167029 in the OEIS).
Cross product
Three-by-three skew-symmetric matrices can be used to represent cross products as matrix multiplications. Consider vectors and Then, defining the matrix
the cross product can be written as
This can be immediately verified by computing both sides of the previous equation and comparing each corresponding element of the results.
i.e., the commutator of skew-symmetric three-by-three matrices can be identified with the cross-product of three-vectors. Since the skew-symmetric three-by-three matrices are the Lie algebra of the rotation group this elucidates the relation between three-space , the cross product and three-dimensional rotations. More on infinitesimal rotations can be found below.
Spectral theory
Since a matrix is similar to its own transpose, they must have the same eigenvalues. It follows that the eigenvalues of a skew-symmetric matrix always come in pairs ±λ (except in the odd-dimensional case where there is an additional unpaired 0 eigenvalue). From the spectral theorem, for a real skew-symmetric matrix the nonzero eigenvalues are all pure imaginary and thus are of the form where each of the are real.
Real skew-symmetric matrices are normal matrices (they commute with their adjoints) and are thus subject to the spectral theorem, which states that any real skew-symmetric matrix can be diagonalized by a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix. However, it is possible to bring every skew-symmetric matrix to a block diagonal form by a special orthogonal transformation.[4][5] Specifically, every real skew-symmetric matrix can be written in the form where is orthogonal and
for real positive-definite . The nonzero eigenvalues of this matrix are ±λki. In the odd-dimensional case Σ always has at least one row and column of zeros.
More generally, every complex skew-symmetric matrix can be written in the form where is unitary and has the block-diagonal form given above with still real positive-definite. This is an example of the Youla decomposition of a complex square matrix.[6]
This defines a form with desirable properties for vector spaces over fields of characteristic not equal to 2, but in a vector space over a field of characteristic 2, the definition is equivalent to that of a symmetric form, as every element is its own additive inverse.
Where the vector space is over a field of arbitrary characteristic including characteristic 2, we may define an alternating form as a bilinear form such that for all vectors in
This is equivalent to a skew-symmetric form when the field is not of characteristic 2, as seen from
whence
A bilinear form will be represented by a matrix such that , once a basis of is chosen, and conversely an matrix on gives rise to a form sending to For each of symmetric, skew-symmetric and alternating forms, the representing matrices are symmetric, skew-symmetric and alternating respectively.
Skew-symmetric matrices over the field of real numbers form the tangent space to the real orthogonal group at the identity matrix; formally, the special orthogonal Lie algebra. In this sense, then, skew-symmetric matrices can be thought of as infinitesimal rotations.
Another way of saying this is that the space of skew-symmetric matrices forms the Lie algebra of the Lie group The Lie bracket on this space is given by the commutator:
It is easy to check that the commutator of two skew-symmetric matrices is again skew-symmetric:
The image of the exponential map of a Lie algebra always lies in the connected component of the Lie group that contains the identity element. In the case of the Lie group this connected component is the special orthogonal group consisting of all orthogonal matrices with determinant 1. So will have determinant +1. Moreover, since the exponential map of a connected compact Lie group is always surjective, it turns out that every orthogonal matrix with unit determinant can be written as the exponential of some skew-symmetric matrix. In the particular important case of dimension the exponential representation for an orthogonal matrix reduces to the well-known polar form of a complex number of unit modulus. Indeed, if a special orthogonal matrix has the form
with . Therefore, putting and it can be written
which corresponds exactly to the polar form of a complex number of unit modulus.
The exponential representation of an orthogonal matrix of order can also be obtained starting from the fact that in dimension any special orthogonal matrix can be written as where is orthogonal and S is a block diagonal matrix with blocks of order 2, plus one of order 1 if is odd; since each single block of order 2 is also an orthogonal matrix, it admits an exponential form. Correspondingly, the matrix S writes as exponential of a skew-symmetric block matrix of the form above, so that exponential of the skew-symmetric matrix Conversely, the surjectivity of the exponential map, together with the above-mentioned block-diagonalization for skew-symmetric matrices, implies the block-diagonalization for orthogonal matrices.
Coordinate-free
More intrinsically (i.e., without using coordinates), skew-symmetric linear transformations on a vector space with an inner product may be defined as the bivectors on the space, which are sums of simple bivectors (2-blades) The correspondence is given by the map where is the covector dual to the vector ; in orthonormal coordinates these are exactly the elementary skew-symmetric matrices. This characterization is used in interpreting the curl of a vector field (naturally a 2-vector) as an infinitesimal rotation or "curl", hence the name.
Skew-symmetrizable matrix
An matrix is said to be skew-symmetrizable if there exists an invertible diagonal matrix such that is skew-symmetric. For real matrices, sometimes the condition for to have positive entries is added.[7]
^Richard A. Reyment; K. G. Jöreskog; Leslie F. Marcus (1996). Applied Factor Analysis in the Natural Sciences. Cambridge University Press. p. 68. ISBN0-521-57556-7.
^Lipschutz, Seymour; Lipson, Marc (September 2005). Schaum's Outline of Theory and Problems of Linear Algebra. McGraw-Hill. ISBN9780070605022.
^Cayley, Arthur (1847). "Sur les determinants gauches" [On skew determinants]. Crelle's Journal. 38: 93–96. Reprinted in Cayley, A. (2009). "Sur les Déterminants Gauches". The Collected Mathematical Papers. Vol. 1. pp. 410–413. doi:10.1017/CBO9780511703676.070. ISBN978-0-511-70367-6.
^Duplij, S.; Nikitin, A.; Galkin, A.; Sergyeyev, A.; Dayi, O.F.; Mohapatra, R.; Lipatov, L.; Dunne, G.; Feinberg, J.; Aoyama, H.; Voronov, T. (2004). "Pfaffian". In Duplij, S.; Siegel, W.; Bagger, J. (eds.). Concise Encyclopedia of Supersymmetry. Springer. p. 298. doi:10.1007/1-4020-4522-0_393.
Ioannes beralih ke halaman ini. Untuk orang lain, lihat Ioannes (nama pemberian).IoannesKaisar Romawi BaratBerkuasa20 November 423 – Mei 425PendahuluHonoriusPenerusValentinianus IIIInformasi pribadiKelahiranabad ke-4Kematiansek. Mei 425Aquileia Ioannes (meninggal 425) adalah kaisar Romawi Barat dari tahun 423 hingga 425, Ioannes adalah seorang primicerius notariorum atau pegawai negeri senior pada saat pengangkatannya. Procopius memujinya sebagai baik lembut dan baik diberkahi dengan kebija...
Artikel ini memiliki terlalu banyak pranala ke artikel lainnya, dan membutuhkan perapian untuk memenuhi standar kualitas Wikipedia. Berdasarkan pedoman gaya Wikipedia, tolong hapuskan pranala duplikat, dan pranala lain yang tidak sesuai dengan konteks. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Bhinneka Tunggal Ika, Pemerintahan Daerah di Indonesia Sejarah Pemerintahan Daerah di Republik Indonesia tidaklah berusia pendek. Lebih dari setengah abad lembaga pemerintah lo...
Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG)Nama sebelumnyaAkademi Meteorologi dan Geofisika (AMG) (1955-1978), Balai Pendidikan dan Latihan Meteorologi dan Geofisika (BPLMG) (1978-2000), Akademi Meteorologi dan Geofisika (AMG) (2000-2014)JenisPerguruan Tinggi KedinasanDidirikan1955Lembaga indukBadan Meteorologi Klimatologi dan GeofisikaAfiliasi akademikInstitut Teknologi Bandung (1955-1960)DirekturDr. Suko Prayitno Adi, M.SiAlamatJalan Perhubungan I No. 5, Kelurahan Pondok Be...
NebraskaNegara bagian BenderaLambangPeta Amerika Serikat dengan ditandaiNegaraAmerika SerikatSebelum menjadi negara bagianTeritori NebraskaBergabung ke Serikat1 Maret 1867 (37)Kota terbesarOmahaMetropolitan terbesarOmaha-Council BluffsPemerintahan • GubernurDave Heineman (R) • Wakil GubernurRick Sheehy (R) • Majelis tinggi{{{Upperhouse}}} • Majelis rendah{{{Lowerhouse}}}Senator ASBen Nelson (D)Mike Johanns (R)Delegasi DPR ASJeff Fortenberry (R)L...
Mstislav I dari Kiev Mstislav I Vladimirovich yang Agung (bahasa Rusia: Мстислав Владимирович Великий) (1 Juni 1076, Turov – 14 April 1132, Kiev) merupakan (Pangeran Agung) dari Kiev, Velikiy Kniaz (1125-1132), ia adalah putra sulung Vladimir II Monomakh dan Gytha dari Wessex. Ia adalah seorang tokoh Saga Norwegia yang terkemuka dengan nama Harald, yang dibawa untuk menyinggung kakeknya, Harold II dari Inggris. Biografi Sebagai calon pewaris ayahnya, Mstislav ...
Thai film actress Petchara Chaowaratเพชรา เชาวราษฎร์Petchara ChaowaratBornEk Chaowarat[1] (1943-01-19) January 19, 1943 (age 81)Rayong, ThailandOccupationActressYears active1961–1978SpouseCharin Nuntanakorn Petchara Chaowarat (Thai: เพชรา เชาวราษฎร์; born 19 January 1943 in Rayong Province, Thailand) is a Thai actress who starred in around 300 films from 1961 to 1979. An icon of the Golden Age of Thai cinema, she ...
Untuk kegunaan lain, lihat Batang Hari. Kabupaten BatanghariKabupatenTranskripsi bahasa daerah • Abjad JawiباتڠهاريPasar Keramat Tinggi Muara Bulian LambangMotto: Serentak bak regam(Melayu Jambi) Menunjukkan watak dan adat yang seiya sekata musyawarah dan mufakat[1]PetaKabupaten BatanghariPetaTampilkan peta SumatraKabupaten BatanghariKabupaten Batanghari (Indonesia)Tampilkan peta IndonesiaKoordinat: 1°42′50″S 103°15′42″E / 1.7138...
STANAG è l'abbreviazione NATO di Standardization Agreement (in lingua inglese: «accordo sulle norme»): una convenzione che stabilisce processi, termini e condizioni per equipaggiamenti o procedure tecniche in ambito militare tra i paesi membri dell'alleanza. Indice 1 Caratteristiche 2 Contenuto 3 Lista (parziale) 4 Note 5 Voci correlate 6 Collegamenti esterni Caratteristiche Ciascuno stato aderente al Patto Atlantico ratifica ogni STANAG e lo rende operativo nelle proprie strutture e comun...
Civil war in the Kingdom of Portugal (1828–1834) For other uses, see Portuguese civil war. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Liberal Wars – news · newspapers · books · scholar · JSTOR (May 2014) (Learn how and when to remove this message) Portuguese Civil WarBattle of Ferreira Bridge, 23 July...
Книга пророка Софонии Раздел Невиим (Пророки) Язык оригинала еврейский Жанр Пророческие книги Предыдущая (православие) Книга пророка Аввакума Следующая Книга пророка Аггея Текст в Викитеке Медиафайлы на Викискладе БиблияХристианство • Иудаизм Библейский канон Тан�...
Charles NoguèsCharles Noguès nel 1943NascitaMonléon-Magnoac, 13 agosto 1876 MorteParigi, 20 aprile 1971 Dati militariPaese servito Terza repubblica francese Francia di Vichy Forza armata Armée de terre Anni di servizio1897 - 1943 GradoGenerale d'armata GuerrePrima guerra mondiale Guerra del Rif Seconda guerra mondiale Comandante di19° Corpo d'armata 10ª Divisione di fanteria 17° Reggimento di artiglieria DecorazioniCroix de guerre 1914-1918 Altre caricheResidente generale ...
Pour les articles homonymes, voir Bakewell. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cette section ou cet article est une traduction incomplète (décembre 2016). Vous pouvez modifier la page pour effectuer la traduction. Bakewell L'église de la paroisse de Tous les Saints de Bakewell, vue du sud de la ville. Administration Pays Royaume-Uni Nation Angleterre Comté Derbyshire Code postal DE45 Indicatif 01629 Démographie Population 3 979 hab...
Programming language that uses first order logic This article is about the programming language. For the narrative device, see Prologue. For other uses, see Prologue (disambiguation). PrologParadigmLogicDesigned byAlain ColmerauerFirst appeared1972; 52 years ago (1972)Stable releasePart 1: General core-Edition 1 (June 1995; 29 years ago (1995-06))Part 2: Modules-Edition 1 (June 2000; 24 years ago (2000-06)) Typing disci...
Памятник Фёдору Коню 54°46′46″ с. ш. 32°02′37″ в. д.HGЯO Тип памятник Страна Россия Город Смоленск Скульптор О. Н. Комов Архитектор А. К. Анипко Дата основания 1991 Строительство 1991 Статус ОКН № 6702680000№ 6702680000 Медиафайлы на Викискладе Памятник Фёдору Коню — о...
Pour les articles homonymes, voir Nef (homonymie). Pour l’article ayant un titre homophone, voir Neffe. Cet article est une ébauche concernant l’architecture ou l’urbanisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Schéma d'une église (et son orientation) avec la nef en rose. En architecture, la nef est une salle oblongue d'une basilique civile ou d'une église allant du portail à l'hémicycle (...
Major modern Turkmen tribes Turkmen tribesTürkmen taýpalaryتۆركمن طایپالاریٛCarpet rosettes (göller) representing five major modern Turkmen tribes as used in the National Flag of TurkmenistanEthnicityTurkmenDescended fromOghuz tribesBranchesTeke, Yomut, Ersari, Chowdur, Gokleng, Saryk and othersLanguageTurkmenReligionSunni Islam The major modern Turkmen tribes are Teke, Yomut, Ersari, Chowdur, Gokleng and Saryk.[1][2] The most numerous are the Teke.[3 ...