Routh–Hurwitz theorem

In mathematics, the Routh–Hurwitz theorem gives a test to determine whether all roots of a given polynomial lie in the left-half complex plane. Polynomials with this property are called Hurwitz stable polynomials. The Routh–Hurwitz theorem is important in dynamical systems and control theory, because the characteristic polynomial of the differential equations of a stable, linear system has roots limited to the left half plane (negative eigenvalues). Thus the theorem provides a mathematical test, the Routh–Hurwitz stability criterion, to determine whether a linear dynamical system is stable without solving the system. The Routh–Hurwitz theorem was proved in 1895, and it was named after Edward John Routh and Adolf Hurwitz.

Notations

Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary axis (i.e. the line z = ic where i is the imaginary unit and c is a real number). Let us define real polynomials P0(y) and P1(y) by f(iy) = P0(y) + iP1(y), respectively the real and imaginary parts of f on the imaginary line.

Furthermore, let us denote by:

  • p the number of roots of f in the left half-plane (taking into account multiplicities);
  • q the number of roots of f in the right half-plane (taking into account multiplicities);
  • Δ arg f(iy) the variation of the argument of f(iy) when y runs from −∞ to +∞;
  • w(x) is the number of variations of the generalized Sturm chain obtained from P0(y) and P1(y) by applying the Euclidean algorithm;
  • I+∞
    −∞
    r
    is the Cauchy index of the rational function r over the real line.

Statement

With the notations introduced above, the Routh–Hurwitz theorem states that:

From the first equality we can for instance conclude that when the variation of the argument of f(iy) is positive, then f(z) will have more roots to the left of the imaginary axis than to its right. The equality pq = w(+∞) − w(−∞) can be viewed as the complex counterpart of Sturm's theorem. Note the differences: in Sturm's theorem, the left member is p + q and the w from the right member is the number of variations of a Sturm chain (while w refers to a generalized Sturm chain in the present theorem).

Routh–Hurwitz stability criterion

We can easily determine a stability criterion using this theorem as it is trivial that f(z) is Hurwitz-stable if and only if pq = n. We thus obtain conditions on the coefficients of f(z) by imposing w(+∞) = n and w(−∞) = 0.

See also

References

  • Routh, E. J. (1877). A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion. Macmillan and co.
  • Hurwitz, A. (1964). "On The Conditions Under Which An Equation Has Only Roots With Negative Real Parts". In Bellman, Richard; Kalaba, Robert E. (eds.). Selected Papers on Mathematical Trends in Control Theory. New York: Dover.
  • Gantmacher, F. R. (2005) [1959]. Applications of the Theory of Matrices. New York: Dover. pp. 226–233. ISBN 0-486-44554-2.
  • Rahman, Q. I.; Schmeisser, G. (2002). Analytic theory of polynomials. London Mathematical Society Monographs. New Series. Vol. 26. Oxford: Oxford University Press. ISBN 0-19-853493-0. Zbl 1072.30006.
  • Explaining the Routh–Hurwitz Criterion (2020)[1]

Read other articles:

Village in Maharashtra This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2018) Village in Maharashtra, IndiaKugaon KurmgramvillageCountry IndiaStateMaharashtraDistrictSolapur districtGovernment • TypeMaharashtraLanguages • OfficialMarathiTime zoneUTC+5:30 (IST) Kugaon is a village in the Karmala taluka of Solapur district in Maharashtra state, Ind...

 

Page de titre des Concertos brandebourgeois. Page de dédicace des Concertos brandebourgeois. Les concertos brandebourgeois (le titre original est en français : Six Concerts à plusieurs instruments[1]) sont un ensemble de six concertos de Johann Sebastian Bach (BWV 1046 à 1051) réunis en 1721, et qui comptent parmi les plus renommés qu'il ait composés. Le qualificatif « brandebourgeois » est dû au musicologue Philipp Spitta, biographe de Bach en 1873, qui, suivant l'us...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Toshimitsu Motegi茂木 敏充 Menteri Luar NegeriMasa jabatan11 September 2019 – 4 November 2021Perdana MenteriShinzō AbeYoshihide SugaFumio KishidaPendahuluAkira AmariPenggantiYoshimasa HayashiMenteri Ekonomi, Perdagangan dan IndustriMasa jabatan26 Desember 2012 – 3 September 2014Perdana MenteriShinzo AbePendahuluYukio EdanoPenggantiYūko Obuchi Informasi pribadiLahir7 Oktober 1955 (umur 68)Ashikaga, Tochigi, JepangPartai politikPartai Demokratik LiberalAlma mate...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Authority of the Freeport Area of Bataan – news · newspapers · books · scholar · JSTOR (March 2020) (Learn how and when to remove this message) Authority of the Freeport Area of BataanLogo, used since April 2011Administration buildingAgency overviewFormedOctobe...

2023 Indian filmMark AntonyTheatrical release posterDirected byAdhik RavichandranScreenplay byAdhik RavichandranS. J. ArjunR. Savari MuthuStory byAdhik RavichandranProduced byS. Vinod KumarStarringVishalS. J. SuryahRitu VarmaNarrated byKarthiCinematographyAbinandhan RamanujamEdited byVijay VelukuttyMusic byG. V. Prakash KumarProductioncompanyMini StudioDistributed byAyngaran InternationalRelease date 14 September 2023 (2023-09-14) Running time151 minutes[1]CountryIndia...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Bölkow Phoebus adalah sailplane kompetisi komposit serat gelas, dirancang dan diproduksi di Jerman pada 1960-an. Sejumlah besar dibangun, mencapai keberhasilan di beberapa kontes nasional, dan banyak tetap aktif. Varian Phoebus A Phoebus B Phoebus C Referensi Wikimedia Commons memiliki media mengenai Bölkow. Artikel bertopik pesawat terbang dan penerbangan ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs lbsPesawat Bölkow dan Messerschmitt-Bölkow-Bloh...

Society of the Institute of Electrical and Electronics Engineers This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: IEEE Signal Processing Society – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message) The IEEE Signal Processing Society (IEEE SPS) is one of the nearly 40 technical societies of the Institute...

 

Western U.S. Mormon expansion This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (December 2013) (Learn how and when to remove this message) This article contains wording that promotes the subject in a subjective manner without im...

 

Dewan Perwakilan Rakyat Daerah Kabupaten BoneDewan Perwakilan RakyatKabupaten Bone2019–2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai27 Agustus 2019PimpinanKetuaIrwandi Burhan (Golkar) sejak 21 Oktober 2019 Wakil Ketua IH. Ramang (Gerindra) sejak 10 Oktober 2019 Wakil Ketua IIAndi Wahyudi Taqwa (PAN) sejak 10 Oktober 2019 Wakil Ketua IIIIndra Jaya (Demokrat) sejak 21 Oktober 2019 KomposisiAnggota45Partai & kursi  PDI-P (3)   NasD...

Alejandro I de Rusia Emperador de Rusia Emperador y Autócrata de Todas las Rusias 23 de marzo de 1801-1 de diciembre de 1825(24 años y 253 días)Predecesor Pablo ISucesor Nicolás IGran duque de Finlandia 29 de marzo de 1809-1 de diciembre de 1825(16 años y 247 días)Predecesor Anexión a Rusia y creación del ducadoSucesor Nicolás I Otros títulos Rey de Polonia 9 de junio de 1815-1 de diciembre de 1825(10 años y 175 días) Predecesor Estanislao II Poniatow...

 

Pagoda Lingxiao di Zhengding, Provinsi Hebei, sebuah pagoda setengah bata setengah kayu yang dibangun pada 1045 Masehi, dengan pengubahan kecil sejak beberapa kali direnovasi. Pagoda Lingxiao (Hanzi: 凌霄塔; Pinyin: Língxiāo tǎ; Wade–Giles: Linghsiao T'a) adalah sebuah pagoda Tiongkok di sebelah barat Kuil Xinglong di Zhengding, Provinsi Hebei, China. Sejarah Pagoda aslinya berdiri di tempat yang sama dalam bentuk Pagoda yang terbuat dari kayu, dan dibangun pada 860 Masehi...

 

بروجة    علم شعار الاسم الرسمي (بالإيطالية: Perugia)‏    الإحداثيات 43°06′44″N 12°23′20″E / 43.1121°N 12.3888°E / 43.1121; 12.3888   [1] تقسيم إداري  البلد إيطاليا[2][3]  التقسيم الأعلى مقاطعة بِرُوجَة  عاصمة لـ أُمبِريةمقاطعة بِرُوجَة  خصائص جغرافية ...

Candide Halaman Judul pada edisi ke-1759 yang dicetak oleh Sirène di ParisPengarangVoltaireJudul asliCandide, ou l'OptimismeIlustratorJean-Michel Moreau le JeuneNegaraPrancisBahasaPrancisGenreSatirTanggal terbitJanuari 1759Jenis mediaCetak Candide adalah sebuah novel satir yang ditulis oleh filsuf Voltaire.[1] Novel ini diterbitkan pertama kali pada 1759 di Jenewa, Swiss.[1] Namun sebelum menyerahkan naskahnya untuk dicetak di Jenewa, Voltaire telah sebelumnya ...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الملك�...

 

大坂直美大坂なおみ2020年的大坂國家/地區 日本居住地 美国加利福尼亞州比佛利山出生 (1997-10-16) 1997年10月16日(26歲) 日本大阪市中央區身高1.80米(5英尺11英寸)教練維姆·費塞特(英语:Wim Fissette)(2020–2022;2024–)轉職業年2013持拍右手持拍(雙手反拍)職業獎金$21,683,713美元[1]單打成績職業戰績280–160(63.64%)冠軍頭銜7最高排名1(2019年1月28日)現...

19th-century state church of the Kingdom of Hawaiʻi Church of HawaiʻiKamehameha IV and Queen Emma established the Anglican Church of Hawaiʻi in 1862ClassificationProtestantOrientationAnglicanTheologyAnglican doctrinePolityEpiscopalRegionHawaiʻiFounderKamehameha IVOrigin1862 Kingdom of HawaiʻiBranched fromAnglican Communion The Church of Hawaiʻi, originally called the Hawaiian Reformed Catholic Church, was the state church and national church of the Kingdom of Hawaiʻi from 1862 to 1893....

 

Business school of the University of Akron The University of Akron College of BusinessCollege of Business BuildingTypePublicEstablished1953DeanRobert J. NemerAcademic staff102Undergraduates2,600Postgraduates450LocationAkron, Ohio, U.S.41°04′39″N 81°31′04″W / 41.0775°N 81.5178°W / 41.0775; -81.5178Websiteuakron.edu/business The University of Akron College of Business is a dual accredited AACSB business school of the University of Akron in Akron, Ohio. The co...