Linear system

In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing, and telecommunications. For example, the propagation medium for wireless communication systems can often be modeled by linear systems.

Definition

Block diagram illustrating the additivity property for a deterministic continuous-time SISO system. The system satisfies the additivity property or is additive if and only if for all time and for all inputs and . Click image to expand it.
Block diagram illustrating the homogeneity property for a deterministic continuous-time SISO system. The system satisfies the homogeneity property or is homogeneous if and only if for all time , for all real constant and for all input . Click image to expand it.
Block diagram illustrating the superposition principle for a deterministic continuous-time SISO system. The system satisfies the superposition principle and is thus linear if and only if for all time , for all real constants and and for all inputs and . Click image to expand it.

A general deterministic system can be described by an operator, H, that maps an input, x(t), as a function of t to an output, y(t), a type of black box description.

A system is linear if and only if it satisfies the superposition principle, or equivalently both the additivity and homogeneity properties, without restrictions (that is, for all inputs, all scaling constants and all time.)[1][2][3][4]

The superposition principle means that a linear combination of inputs to the system produces a linear combination of the individual zero-state outputs (that is, outputs setting the initial conditions to zero) corresponding to the individual inputs.[5][6]

In a system that satisfies the homogeneity property, scaling the input always results in scaling the zero-state response by the same factor.[6] In a system that satisfies the additivity property, adding two inputs always results in adding the corresponding two zero-state responses due to the individual inputs.[6]

Mathematically, for a continuous-time system, given two arbitrary inputs as well as their respective zero-state outputs then a linear system must satisfy for any scalar values α and β, for any input signals x1(t) and x2(t), and for all time t.

The system is then defined by the equation H(x(t)) = y(t), where y(t) is some arbitrary function of time, and x(t) is the system state. Given y(t) and H, the system can be solved for x(t).

The behavior of the resulting system subjected to a complex input can be described as a sum of responses to simpler inputs. In nonlinear systems, there is no such relation. This mathematical property makes the solution of modelling equations simpler than many nonlinear systems. For time-invariant systems this is the basis of the impulse response or the frequency response methods (see LTI system theory), which describe a general input function x(t) in terms of unit impulses or frequency components.

Typical differential equations of linear time-invariant systems are well adapted to analysis using the Laplace transform in the continuous case, and the Z-transform in the discrete case (especially in computer implementations).

Another perspective is that solutions to linear systems comprise a system of functions which act like vectors in the geometric sense.

A common use of linear models is to describe a nonlinear system by linearization. This is usually done for mathematical convenience.

The previous definition of a linear system is applicable to SISO (single-input single-output) systems. For MIMO (multiple-input multiple-output) systems, input and output signal vectors (, , , ) are considered instead of input and output signals (, , , .)[2][4]

This definition of a linear system is analogous to the definition of a linear differential equation in calculus, and a linear transformation in linear algebra.

Examples

A simple harmonic oscillator obeys the differential equation:

If then H is a linear operator. Letting y(t) = 0, we can rewrite the differential equation as H(x(t)) = y(t), which shows that a simple harmonic oscillator is a linear system.

Other examples of linear systems include those described by , , , and any system described by ordinary linear differential equations.[4] Systems described by , , , , , , , and a system with odd-symmetry output consisting of a linear region and a saturation (constant) region, are non-linear because they don't always satisfy the superposition principle.[7][8][9][10]

The output versus input graph of a linear system need not be a straight line through the origin. For example, consider a system described by (such as a constant-capacitance capacitor or a constant-inductance inductor). It is linear because it satisfies the superposition principle. However, when the input is a sinusoid, the output is also a sinusoid, and so its output-input plot is an ellipse centered at the origin rather than a straight line passing through the origin.

Also, the output of a linear system can contain harmonics (and have a smaller fundamental frequency than the input) even when the input is a sinusoid. For example, consider a system described by . It is linear because it satisfies the superposition principle. However, when the input is a sinusoid of the form , using product-to-sum trigonometric identities it can be easily shown that the output is , that is, the output doesn't consist only of sinusoids of same frequency as the input (3 rad/s), but instead also of sinusoids of frequencies 2 rad/s and 4 rad/s; furthermore, taking the least common multiple of the fundamental period of the sinusoids of the output, it can be shown the fundamental angular frequency of the output is 1 rad/s, which is different than that of the input.

Time-varying impulse response

The time-varying impulse response h(t2, t1) of a linear system is defined as the response of the system at time t = t2 to a single impulse applied at time t = t1. In other words, if the input x(t) to a linear system is where δ(t) represents the Dirac delta function, and the corresponding response y(t) of the system is then the function h(t2, t1) is the time-varying impulse response of the system. Since the system cannot respond before the input is applied the following causality condition must be satisfied:

The convolution integral

The output of any general continuous-time linear system is related to the input by an integral which may be written over a doubly infinite range because of the causality condition:

If the properties of the system do not depend on the time at which it is operated then it is said to be time-invariant and h is a function only of the time difference τ = tt' which is zero for τ < 0 (namely t < t' ). By redefinition of h it is then possible to write the input-output relation equivalently in any of the ways,

Linear time-invariant systems are most commonly characterized by the Laplace transform of the impulse response function called the transfer function which is:

In applications this is usually a rational algebraic function of s. Because h(t) is zero for negative t, the integral may equally be written over the doubly infinite range and putting s = follows the formula for the frequency response function:

Discrete-time systems

The output of any discrete time linear system is related to the input by the time-varying convolution sum: or equivalently for a time-invariant system on redefining h, where represents the lag time between the stimulus at time m and the response at time n.

See also

References

  1. ^ Phillips, Charles L.; Parr, John M.; Riskin, Eve A. (2008). Signals, Systems, and Transforms (4 ed.). Pearson. p. 74. ISBN 978-0-13-198923-8.
  2. ^ a b Bessai, Horst J. (2005). MIMO Signals and Systems. Springer. pp. 27–28. ISBN 0-387-23488-8.
  3. ^ Alkin, Oktay (2014). Signals and Systems: A MATLAB Integrated Approach. CRC Press. p. 99. ISBN 978-1-4665-9854-6.
  4. ^ a b c Nahvi, Mahmood (2014). Signals and Systems. McGraw-Hill. pp. 162–164, 166, 183. ISBN 978-0-07-338070-4.
  5. ^ Sundararajan, D. (2008). A Practical Approach to Signals and Systems. Wiley. p. 80. ISBN 978-0-470-82353-8.
  6. ^ a b c Roberts, Michael J. (2018). Signals and Systems: Analysis Using Transform Methods and MATLAB® (3 ed.). McGraw-Hill. pp. 131, 133–134. ISBN 978-0-07-802812-0.
  7. ^ Deergha Rao, K. (2018). Signals and Systems. Springer. pp. 43–44. ISBN 978-3-319-68674-5.
  8. ^ Chen, Chi-Tsong (2004). Signals and systems (3 ed.). Oxford University Press. pp. 55–57. ISBN 0-19-515661-7.
  9. ^ ElAli, Taan S.; Karim, Mohammad A. (2008). Continuous Signals and Systems with MATLAB (2 ed.). CRC Press. p. 53. ISBN 978-1-4200-5475-0.
  10. ^ Apte, Shaila Dinkar (2016). Signals and Systems: Principles and Applications. Cambridge University Press. p. 187. ISBN 978-1-107-14624-2.

Read other articles:

خوليو غالان معلومات شخصية الميلاد 5 ديسمبر 1958[1][2][3]  كواويلا  الوفاة 4 أغسطس 2006 (47 سنة) [4][2]  زاكاتيكاس  مواطنة المكسيك  الحياة العملية المهنة رسام،  ومصور،  وراسم[5]  اللغات الإسبانية  تعديل مصدري - تعديل   خوليو غالان (بالإسبا�...

Kanjeng Mas Ayu Swarakaloka • Dato' SriRossaKMATS • SSAP • KMAS • DIMPRossa Konser 25 Shining Years (2022)LahirSri Rossa Roslaina Handiyani9 Oktober 1978 (umur 45)Sumedang, Jawa Barat, IndonesiaNama lainRossaTeteh OchaDato' Sri RossaAlmamaterUniversitas IndonesiaPekerjaanPenyanyiPebisnisPemeranProduser rekamanProduser filmSutradaraJuriPresenterSuami/istriSurendro Prasetyo ​ ​(m. 2004; c. 2009)​[1]Anak1PenghargaanPlanet ...

Iding SoemitaBiografiKelahiran3 April 1908 Cikatomas Kematian17 November 2001 (93 tahun)Suriname (en) KegiatanPekerjaanPolitikus Iding Soemita (Aksara Sunda Baku: ᮄᮓᮤᮀ ᮞᮥᮙᮤᮒ; Ejaan Bahasa Indonesia: Iding Sumita) (3 April 1908 – 18 November 2001) merupakan pimpinan partai politik Kaum Tani Persatuan Indonesia (KTPI) dari Suriname.[1] Soemita dilahirkan di wilayah Preanger, istilah yang juga digunakan untuk merujuk pada daerah pegunungan di selatan dae...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Munif Chatib Munif Chatib (lahir 5 Juli 1969)[1] (meninggal pada 30 Juni 2022) adalah praktisi pendidikan dan penulis buku-buku pendidikan populer. Buku pertamanya berjudul Sekolahnya Manusia rilis pada tahun 2009 dan dibedah bersama Bobbi De ...

Koordinat: 53°50′56″N 1°35′06″W / 53.8489°N 1.5849°W / 53.8489; -1.5849 Adel Gereja Adel Adel Letak Adel di West Yorkshire Borough metropolitan Kota Leeds County metropolitan West Yorkshire Wilayah Yorkshire and the Humber Negara konstituen Inggris Negara berdaulat Britania Raya Kota pos LEEDS Distrik kode pos LS16 Kode telepon 0113 Polisi West Yorkshire Pemadam kebakaran West Yorkshire Ambulans Yorkshire Parlemen UE ...

This article is about the 10th-century Slovene/Latin theological texts. For the 7th-century Vetus Latina New Testament texts, see Frisingensia Fragmenta. The beginning of the second Freising manuscript The Freising manuscripts[nb 1] are the first Latin-script continuous text in a Slavic language and the oldest document in Slovene.[1] Description and origin The manuscripts were found bound into a Latin codex (manuscript book).[2] Four parchment leaves and a further quar...

Pour les articles homonymes, voir Le Petit Courrier. Le Petit CourrierArtiste Albrecht DürerDate vers 1496Type EstampeTechnique Burin sur cuivreLieu de création NurembergDimensions (H × L) 10,9 × 7,8 cmMouvement Renaissance allemandeNo d’inventaire 1975.49 (Cleveland Museum of Art), EST 236 (musée Condé)Localisation Cleveland Museum of Art, musée Condé (Chantilly) modifier - modifier le code - modifier Wikidata Le Petit Courrier est une gravure sur cuivre au ...

Prof. Dr. H.Aulia TasmanM.Sc.Rektor Universitas Jambi ke-10Masa jabatan2012 – 2016PendahuluKemas Arsyad SomadPenggantiJohni Najwan Informasi pribadiLahir(1959-10-10)10 Oktober 1959Kerinci, JambiMeninggal18 Desember 2018(2018-12-18) (umur 59)[1][2]JambiKebangsaanIndonesiaAlma materKansas State UniversityUniversity of the PhilippinesProfesiAkademisiSunting kotak info • L • B Prof. Dr. H. Aulia Tasman, M.Sc (10 Oktober 1959 – 18 Desem...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2018) التسلسل الزمني الفلكي، أو التأريخ الفلكي، هو أسلوب تقني لتأريخ الأحداث أو الأعمال الفنية التي ترتبط مع الظواهر الفلكية. قد فعلت السجلات المكتوبة من الأحدا�...

Liberia padaOlimpiadeKode IOCLBRKONKomite Olimpiade Nasional LiberiaMedali 0 0 0 Total 0 Penampilan Musim Panas19561960196419681972197619801984198819921996200020042008201220162020 Liberia telah mengirim para atlet dalam setiap Olimpiade Musim Panas yang diadakan sejak 1956 dengan pengecualian 1968, 1976 dan 1992, meskipun negara tersebut tak pernah memenangkan medali Olimpiade. Tidak ada atlet dari Liberia yang berkompetisi dalam Olimpiade Musim Dingin. Pranala luar Liberia. International Oly...

Artículo del The Philadelphia Inquirer en donde se reporta la captura de un «devorador de hombres» en las costas de Nueva Jersey después de los ataques. Los ataques de tiburón de la costa de Jersey de 1916 fueron una serie de ataques de tiburones que sucedieron a lo largo de la costa de Nueva Jersey entre el 1 y el 12 de julio de 1916, en los que cuatro personas murieron y una resultó herida. Desde 1916, los estudiosos han debatido sobre las especies de tiburón y el número de animales...

the 1st Count of Hoogstraeten and 2nd Count of Salazar during the Funeral of Albert VII, Archduke Luis de Velasco y Velasco, 2nd Count of Salazar, 1st Marquess of Belvedere, (Valladolid, Spain, 1559 – Dunkirk, Spanish Netherlands (present-day France), 1625), was a Spanish military commander during the French Wars of Religion and the Eighty Years' War. Life His parents were Juan de Velasco, señor de Castrillo de Tejeriego and Beatriz de Mendoza, daughter of Luis de Velasco, marqués de Sali...

Early-19th-century U.S. fur trade district in North America Not to be confused with Oregon County. Oregon Country1818–1846 American and Hudson's Bay Company flags were used.CapitalOregon City (US)Fort St. James (British)Government• (British; 1818–1822) Governor Joseph Berens of Hudson's Bay Company• (British; 1822–1846) Governor John Pelly of Hudson's Bay Company• (U.S.; 1841–1843) Supreme Judge Ira Babcock• (U.S.; 1843–1845) Executive Committee• (...

Township in Sussex County, New Jersey, United States Township in New Jersey, United StatesVernon Township, New JerseyTownshipAlong CR 517 and NJ 94 SealMap of Vernon Township in Sussex County. Inset: Location of Sussex County highlighted in the State of New Jersey.Census Bureau map of Vernon Township, New JerseyVernon TownshipLocation in Sussex CountyShow map of Sussex County, New JerseyVernon TownshipLocation in New JerseyShow map of New JerseyVernon TownshipLocation in the United StatesShow...

« PACS » redirige ici. Pour les autres significations, voir PACS (homonymie). Évolution du nombre de pacs et de mariages civils entre 2008 et 2018 d'après l'Insee. Le pacte civil de solidarité (d'acronyme PACS, substantivé en « pacs ») est un partenariat civil du droit français et, avec le mariage, une des deux formes d'union civile. Il a pour objet d'organiser la vie commune de deux personnes majeures de sexe différent ou de même sexe[1] (appelées « part...

Town in New South Wales, AustraliaToomaNew South WalesThe It's Not a Tooma Inn aka The Three Stags InnToomaCoordinates35°58′0″S 148°4′0″E / 35.96667°S 148.06667°E / -35.96667; 148.06667Population104 (2016 census)[1]Postcode(s)2642Elevation331 m (1,086 ft)Location 11 km (7 mi) from Welaregang 34 km (21 mi) from Tumbarumba LGA(s)Snowy Valleys CouncilCountySelwynState electorate(s)AlburyFederal division(s)Eden-Monaro ...

Artikel ini bukan mengenai Berkah (seri televisi) atau Berkah. Berkah CintaGenre Roman Drama SkenarioHilman HariwijayaCeritaHilman HariwijayaSutradaraSridhar JettyPemeran Irish Bella Giorgino Abraham Omar Danial Eva Anindita Angela Gilsha Penggubah lagu temaIndah Dewi PertiwiLagu pembukaMenemukanmu oleh Indah Dewi PertiwiLagu penutupMenemukanmu oleh Indah Dewi PertiwiPenata musikStevenNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode224ProduksiProduserLeo Sutanto...

جينيفر سوندرز معلومات شخصية الميلاد 6 يوليو 1958 (العمر 65 سنة)سليفورد مواطنة المملكة المتحدة  الأولاد إيلا إدموندسونبيتي إدموندسون  الحياة العملية المدرسة الأم المدرسة المركزية للخطابة والدراما  [لغات أخرى]‏[1][2]مدرسة سانت بول للبنات  المهنة ممثلة تل...

Lenoir i North Carolina For alternative betydninger, se Lenoir. (Se også artikler, som begynder med Lenoir) Lenoir (udtales som La-NOR) er en by i Caldwell County i det vestlige North Carolina i USA. Det er countyets administrative centrum (county seat).[1] Byen havde godt 18.000 indbyggere ved den seneste folketælling i 2010.[2] Lenoir ligger udkanten af Blue Ridge Mountains i de såkaldte foothills. Nordøst for byen ligger Brushy Mountains, der er en udløber af Blue Ridg...

Burnin' UpSingel oleh Jonas Brothersdari album A Little Bit LongerSisi-BBurnin' Up (No-Rap)Dirilis19 Juni 2008 (2008-06-19)FormatSingle CDUnduhan digitalDirekam2008GenrePop rockteen poppower popDurasi2:54 (versi album)2:37 (versi No-Rap)LabelHollywoodPenciptaNicholas JonasJoseph JonasKevin Jonas IIProduserJohn Fields[1]Kronologi singel Jonas Brothers Play My Music (2008) Burnin' Up (2008) Pushin' Me Away (2008) Video musikBurnin' Up di YouTube Burnin' Up adalah singel pertam...