Up to

Top: In a hexagon vertex set there are 20 partitions which have one three-element subset (green) and three single-element subsets (uncolored). Bottom: Of these, there are 4 partitions up to rotation, and 3 partitions up to rotation and reflection.

Two mathematical objects a and b are called "equal up to an equivalence relation R"

  • if a and b are related by R, that is,
  • if aRb holds, that is,
  • if the equivalence classes of a and b with respect to R are equal.

This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, "x is unique up to R" means that all objects x under consideration are in the same equivalence class with respect to the relation R.

Moreover, the equivalence relation R is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation R that relates two lists if one can be obtained by reordering (permuting) the other.[1] As another example, the statement "the solution to an indefinite integral is sin(x), up to addition of a constant" tacitly employs the equivalence relation R between functions, defined by fRg if the difference fg is a constant function, and means that the solution and the function sin(x) are equal up to this R. In the picture, "there are 4 partitions up to rotation" means that the set P has 4 equivalence classes with respect to R defined by aRb if b can be obtained from a by rotation; one representative from each class is shown in the bottom left picture part.

Equivalence relations are often used to disregard possible differences of objects, so "up to R" can be understood informally as "ignoring the same subtleties as R ignores". In the factorization example, "up to ordering" means "ignoring the particular ordering".

Further examples include "up to isomorphism", "up to permutations", and "up to rotations", which are described in the Examples section.

In informal contexts, mathematicians often use the word modulo (or simply mod) for similar purposes, as in "modulo isomorphism".

Objects that are distinct up to an equivalence relation defined by a group action, such as rotation, reflection, or permutation, can be counted using Burnside's lemma or its generalization, Pólya enumeration theorem.

Examples

Tetris

Tetris pieces I, J, L, O, S, T, Z

Consider the seven Tetris pieces (I, J, L, O, S, T, Z), known mathematically as the tetrominoes. If you consider all the possible rotations of these pieces — for example, if you consider the "I" oriented vertically to be distinct from the "I" oriented horizontally — then you find there are 19 distinct possible shapes to be displayed on the screen. (These 19 are the so-called "fixed" tetrominoes.[2]) But if rotations are not considered distinct — so that we treat both "I vertically" and "I horizontally" indifferently as "I" — then there are only seven. We say that "there are seven tetrominoes, up to rotation". One could also say that "there are five tetrominoes, up to rotation and reflection", which accounts for the fact that L reflected gives J, and S reflected gives Z.

Eight queens

A solution of the eight queens problem

In the eight queens puzzle, if the queens are considered to be distinct (e.g. if they are colored with eight different colors), then there are 3709440 distinct solutions. Normally, however, the queens are considered to be interchangeable, and one usually says "there are 3,709,440 / 8! = 92 unique solutions up to permutation of the queens", or that "there are 92 solutions modulo the names of the queens", signifying that two different arrangements of the queens are considered equivalent if the queens have been permuted, as long as the set of occupied squares remains the same.

If, in addition to treating the queens as identical, rotations and reflections of the board were allowed, we would have only 12 distinct solutions "up to symmetry and the naming of the queens". For more, see Eight queens puzzle § Solutions.

Polygons

The regular n-gon, for a fixed n, is unique up to similarity. In other words, the "similarity" equivalence relation over the regular n-gons (for a fixed n) has only one equivalence class; it is impossible to produce two regular n-gons which are not similar to each other.

Group theory

In group theory, one may have a group G acting on a set X, in which case, one might say that two elements of X are equivalent "up to the group action"—if they lie in the same orbit.

Another typical example is the statement that "there are two different groups of order 4 up to isomorphism", or "modulo isomorphism, there are two groups of order 4". This means that, if one considers isomorphic groups "equivalent", there are only two equivalence classes of groups of order 4.

Nonstandard analysis

A hyperreal x and its standard part st(x) are equal up to an infinitesimal difference.

See also

References

  1. ^ Nekovář, Jan (2011). "Mathematical English (a brief summary)" (PDF). Institut de mathématiques de Jussieu – Paris Rive Gauche. Retrieved 2024-02-08.
  2. ^ Weisstein, Eric W. "Tetromino". MathWorld. Retrieved 2023-09-26.

Read other articles:

William Walker Presiden Republik NikaraguaMasa jabatan12 Juli 1856 – 1 Mei 1857 PendahuluPatricio RivasPenggantiMáximo Jerez dan Tomás MartínezPresiden Republik Sonora PertamaMasa jabatan21 Januari 1854 – 8 Mei 1854Presiden Pertama Republik California HilirMasa jabatan3 November 1853 – 21 Januari 1854 Informasi pribadiLahirTanggal tidak terbaca. Angka tahun harus memiliki 4 digit (gunakan awalan nol untuk tahun < 1000).Nashville, TennesseeMeninggal12 Sep...

 

ColorsAlbum studio karya CNBLUEDirilis30 September 2015 (2015-09-30)Direkam2015GenrePop rockBahasaBahasa Jepang, Bahasa InggrisLabelWarner Music JapanKronologi CNBLUE 2getherString Module Error: Match not foundString Module Error: Match not found Colors Singel dalam album Colors WhiteDirilis: 8 April 2015 SupernovaDirilis: 9 September 2015 Templat:Contains Japanese text Colors (ditulis juga sebagai colors) adalah album studio berbahasa Jepang di bawah label utama keempat (enam secara...

 

компонент WindowsДиспетчер программ Тип компонента системное программное обеспечение, проприетарное программное обеспечение и оболочка операционной системы Включён в Microsoft Windows 3.x Заменил MS-DOS Executive под Windows 1.x/2.x Был заменён Меню «Пуск» и проводник под Windows 95 Диспетче�...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

This article is about the chemical element. For other uses, see Plutonium (disambiguation). Not to be confused with Polonium. Chemical element, symbol Pu and atomic number 94Plutonium, 94PuPlutoniumPronunciation/pluːˈtoʊniəm/ ​(ploo-TOH-nee-əm)Allotropessee Allotropes of plutoniumAppearancesilvery white, tarnishing to dark gray in airMass number[244]Plutonium in the periodic table Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesiu...

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт�...

 

American diplomatic mission Consulate General of the United States,Hong Kong and Macau美國駐香港及澳門總領事館AddressNo. 26, Garden Road,Central,Hong Kong Island,Hong KongConsul GeneralGregory May Consulate General of the United States, Hong Kong and MacauChinese nameTraditional Chinese美國駐香港及澳門總領事館Simplified Chinese美国驻香港及澳门总领事馆TranscriptionsStandard MandarinHanyu PinyinMěiguó zhù Xiānggǎng jí Àomén ZǒnglǐngshìguǎnYue...

 

Association football club in Walsall, England Football clubRushall OlympicFull nameRushall Olympic Football ClubNickname(s)The PicsFounded1893; 131 years ago (1893)GroundDales Lane, Rushall, WalsallCapacity1,400[1]Coordinates52°36′3.128″N 1°57′8.179″W / 52.60086889°N 1.95227194°W / 52.60086889; -1.95227194ChairmanJohn AllenManagerLiam Carl McDonaldLeagueNational League North2023–24National League North, 19th of 24WebsiteClub webs...

Luca Grimaldi Doge della Repubblica di Genova e re di CorsicaDurata mandato22 gennaio 1728 –22 gennaio 1730 PredecessoreGerolamo Veneroso SuccessoreFrancesco Maria Balbi Dati generaliPrefisso onorificoSerenissimo doge Il Serenissimo Luca Grimaldi (Genova, 1675 – Genova, 1750) fu il 149º doge della Repubblica di Genova e re di Corsica. Biografia Stemma nobiliare dei Grimaldi Nacque a Genova nel 1675. Fu il fratello minore di Antonio Grimaldi, altro esponente della famig...

 

This article is about the Rolling Stones song. For the firearm malfunction term, see Hang fire. For the science fiction novel, see Hangfire. 1982 single by The Rolling StonesHang FireSingle by The Rolling Stonesfrom the album Tattoo You B-sideNeighboursReleasedMarch 1982 (US)[1]Recorded1978–1979 (basic track), 1981 (overdubs)GenreRock and roll[2]doo-wop[3]Length2:22LabelRolling StonesSongwriter(s)Jagger/RichardsProducer(s)The Glimmer TwinsThe Rolling Stones singles c...

 

1965 concert tour by the Beatles The Beatles' 1965 US tourTour by the BeatlesThe Beatles' roadmapAssociated albumHelp!Start date15 August 1965End date31 August 1965No. of shows16The Beatles concert chronology 1965 European tour 1965 US tour 1965 UK tour The Beatles staged their second concert tour of the United States (with one date in Canada) in the late summer of 1965. At the peak of American Beatlemania, they played a mixture of outdoor stadiums and indoor arenas, with historic concerts at...

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

 

Chinese politician, Governor of Hebei and Hubei (1909–2001) Liu Zihou刘子厚Chairman of Revolutionary Committee of HebeiIn office1971–1979Preceded byLi XuefengSucceeded byJin MingFirst Secretary of the Communist Party of HebeiIn office1966–1968Preceded byLin TieSucceeded byLi XuefengGovernor of HebeiIn office1958–1968Preceded byLin TieSucceeded byLi XuefengGovernor of HubeiIn office1954–1956Preceded byLi XiannianSucceeded byZhang Tixue Personal detailsBornDecember 1909Ren County, ...

 

ألفية: ألفية 2 قرون: القرن 18 – القرن 19 – القرن 20 عقود: عقد 1810  عقد 1820  عقد 1830  – عقد 1840 –  عقد 1850  عقد 1860  عقد 1870 سنين: 1841 1842 1843 – 1844 – 1845 1846 1847 1844 في التقاويم الأخرىتقويم ميلادي1844MDCCCXLIVتقويم هجري1259–1260تقويم هجري شمسي1222–1223تقويم أمازيغي2794من بداية روما259...

Pieve di San Michele Arcangelo a MetellianoLa facciata della pieveStato Italia RegioneToscana LocalitàCortona Coordinate43°15′50.38″N 12°00′35.61″E43°15′50.38″N, 12°00′35.61″E Religionecattolica TitolareMichele Arcangelo Diocesi Arezzo-Cortona-Sansepolcro ArchitettoMaginardo Modifica dati su Wikidata · Manuale La pieve di San Michele Arcangelo a Metelliano è un edificio di culto cattolico sito in località Metelliano, nel comune di Cortona, in provincia di Are...

 

У этого термина существуют и другие значения, см. Римский театр (значения). Эту страницу предлагается переименовать в «Театральное здание в Древнем Риме».Пояснение причин и обсуждение — на странице Википедия:К переименованию/18 августа 2021. Пожалуйста, основывайте свои ...

 

龙江航空Longjiang Airlines IATA ICAO 呼号 LT SNG SNOW EAGLE雪雕 創立於2014年樞紐機場 中国 哈尔滨太平国际机场机队数量5通航城市6总部 中国 山西省 太原市重要人物衛洪江 董事长及大股東网站http://www.longjianghk.com/ 龙江航空公司,(IATA:LT,ICAO:SNG,英文:LONGJIANG AIRLINES,呼号:雪雕),成立于2014年9月3日,是经中国民用航空局批准的从事航空客货运输服务的综合航空运输�...

Les Verrièrescomune Les Verrières – Veduta LocalizzazioneStato Svizzera Cantone Neuchâtel DistrettoNon presente AmministrazioneLingue ufficialifrancese Data di istituzione1878 TerritorioCoordinate46°54′20″N 6°28′55″E46°54′20″N, 6°28′55″E (Les Verrières) Altitudine930 m s.l.m. Superficie28,87[1] km² Abitanti652[2] (2022) Densità22,58 ab./km² Frazionivedi elenco Comuni confinantiLa Côte-aux-Fées, Les Alliés (FR-25), Ponta...

 

Hongan-ji district in Hawaii The Honpa Hongwanji Mission of Hawaii (Japanese: 本派本願寺ハワイ別院, Honpa Honganji Hawai Betsuin) is a district of the Nishi (West) Hongwanji branch of Jodo Shinshu Buddhism, a school of Mahayana Pure Land Buddhism. Branch location in Honolulu History Jodo Shinshu Buddhism was established in Hawaii as a result of the immigration of Japanese people to work the sugarcane plantations in Hawaii. The first Hongwanji temple in the Hawaiian Islands was dedic...