Determinant of large Toeplitz matrices
In mathematical analysis , the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices .[ 1] [ 2] [ 3] They were first proved by Gábor Szegő .
Notation
Let
w
{\displaystyle w}
be a Fourier series with Fourier coefficients
c
k
{\displaystyle c_{k}}
, relating to each other as
w
(
θ θ -->
)
=
∑ ∑ -->
k
=
− − -->
∞ ∞ -->
∞ ∞ -->
c
k
e
i
k
θ θ -->
,
θ θ -->
∈ ∈ -->
[
0
,
2
π π -->
]
,
{\displaystyle w(\theta )=\sum _{k=-\infty }^{\infty }c_{k}e^{ik\theta },\qquad \theta \in [0,2\pi ],}
c
k
=
1
2
π π -->
∫ ∫ -->
0
2
π π -->
w
(
θ θ -->
)
e
− − -->
i
k
θ θ -->
d
θ θ -->
,
{\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }w(\theta )e^{-ik\theta }\,d\theta ,}
such that the
n
× × -->
n
{\displaystyle n\times n}
Toeplitz matrices
T
n
(
w
)
=
(
c
k
− − -->
l
)
0
≤ ≤ -->
k
,
l
≤ ≤ -->
n
− − -->
1
{\displaystyle T_{n}(w)=\left(c_{k-l}\right)_{0\leq k,l\leq n-1}}
are Hermitian , i.e., if
T
n
(
w
)
=
T
n
(
w
)
∗ ∗ -->
{\displaystyle T_{n}(w)=T_{n}(w)^{\ast }}
then
c
− − -->
k
=
c
k
¯ ¯ -->
{\displaystyle c_{-k}={\overline {c_{k}}}}
. Then both
w
{\displaystyle w}
and eigenvalues
(
λ λ -->
m
(
n
)
)
0
≤ ≤ -->
m
≤ ≤ -->
n
− − -->
1
{\displaystyle (\lambda _{m}^{(n)})_{0\leq m\leq n-1}}
are real-valued and the determinant of
T
n
(
w
)
{\displaystyle T_{n}(w)}
is given by
det
T
n
(
w
)
=
∏ ∏ -->
m
=
1
n
− − -->
1
λ λ -->
m
(
n
)
{\displaystyle \det T_{n}(w)=\prod _{m=1}^{n-1}\lambda _{m}^{(n)}}
.
Szegő theorem
Under suitable assumptions the Szegő theorem states that
lim
n
→ → -->
∞ ∞ -->
1
n
∑ ∑ -->
m
=
0
n
− − -->
1
F
(
λ λ -->
m
(
n
)
)
=
1
2
π π -->
∫ ∫ -->
0
2
π π -->
F
(
w
(
θ θ -->
)
)
d
θ θ -->
{\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n}}\sum _{m=0}^{n-1}F(\lambda _{m}^{(n)})={\frac {1}{2\pi }}\int _{0}^{2\pi }F(w(\theta ))\,d\theta }
for any function
F
{\displaystyle F}
that is continuous on the range of
w
{\displaystyle w}
. In particular
lim
n
→ → -->
∞ ∞ -->
1
n
∑ ∑ -->
m
=
0
n
− − -->
1
λ λ -->
m
(
n
)
=
1
2
π π -->
∫ ∫ -->
0
2
π π -->
w
(
θ θ -->
)
d
θ θ -->
<
∞ ∞ -->
{\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n}}\sum _{m=0}^{n-1}\lambda _{m}^{(n)}={\frac {1}{2\pi }}\int _{0}^{2\pi }w(\theta )\,d\theta <\infty }
1
such that the arithmetic mean of
λ λ -->
(
n
)
{\displaystyle \lambda ^{(n)}}
converges to the integral of
w
{\displaystyle w}
.[ 4]
First Szegő theorem
The first Szegő theorem[ 1] [ 3] [ 5] states that, if right-hand side of (1 ) holds and
w
≥ ≥ -->
0
{\displaystyle w\geq 0}
, then
lim
n
→ → -->
∞ ∞ -->
(
det
T
n
(
w
)
)
1
n
=
lim
n
→ → -->
∞ ∞ -->
det
T
n
(
w
)
det
T
n
− − -->
1
(
w
)
=
exp
-->
(
1
2
π π -->
∫ ∫ -->
0
2
π π -->
log
-->
w
(
θ θ -->
)
d
θ θ -->
)
{\displaystyle \lim _{n\to \infty }\left(\det T_{n}(w)\right)^{\frac {1}{n}}=\lim _{n\to \infty }{\frac {\det T_{n}(w)}{\det T_{n-1}(w)}}=\exp \left({\frac {1}{2\pi }}\int _{0}^{2\pi }\log w(\theta )\,d\theta \right)}
2
holds for
w
>
0
{\displaystyle w>0}
and
w
∈ ∈ -->
L
1
{\displaystyle w\in L_{1}}
. The RHS of (2 ) is the geometric mean of
w
{\displaystyle w}
(well-defined by the arithmetic-geometric mean inequality ).
Second Szegő theorem
Let
c
^ ^ -->
k
{\displaystyle {\widehat {c}}_{k}}
be the Fourier coefficient of
log
-->
w
∈ ∈ -->
L
1
{\displaystyle \log w\in L^{1}}
, written as
c
^ ^ -->
k
=
1
2
π π -->
∫ ∫ -->
0
2
π π -->
log
-->
(
w
(
θ θ -->
)
)
e
− − -->
i
k
θ θ -->
d
θ θ -->
{\displaystyle {\widehat {c}}_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }\log(w(\theta ))e^{-ik\theta }\,d\theta }
The second (or strong) Szegő theorem[ 1] [ 6] states that, if
w
≥ ≥ -->
0
{\displaystyle w\geq 0}
, then
lim
n
→ → -->
∞ ∞ -->
det
T
n
(
w
)
e
(
n
+
1
)
c
^ ^ -->
0
=
exp
-->
(
∑ ∑ -->
k
=
1
∞ ∞ -->
k
|
c
^ ^ -->
k
|
2
)
.
{\displaystyle \lim _{n\to \infty }{\frac {\det T_{n}(w)}{e^{(n+1){\widehat {c}}_{0}}}}=\exp \left(\sum _{k=1}^{\infty }k\left|{\widehat {c}}_{k}\right|^{2}\right).}
See also
References
^ a b c Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators . Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X . MR 1071374 .
^ Ehrhardt, T.; Silbermann, B. (2001) [1994], "Szegö_limit_theorems" , Encyclopedia of Mathematics , EMS Press
^ a b Simon, Barry (2011). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials . Princeton: Princeton University Press. ISBN 978-0-691-14704-8 .
^ Gray, Robert M. (2006). "Toeplitz and Circulant Matrices: A Review" (PDF) . Foundations and Trends in Signal Processing .
^ Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion" . Math. Ann . 76 (4): 490– 503. doi :10.1007/BF01458220 . S2CID 123034653 .
^ Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] : 228– 238. MR 0051961 .