Tomita–Takesaki theory

In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects.

The theory was introduced by Minoru Tomita (1967), but his work was hard to follow and mostly unpublished, and little notice was taken of it until Masamichi Takesaki (1970) wrote an account of Tomita's theory.[1]

Modular automorphisms of a state

Suppose that M is a von Neumann algebra acting on a Hilbert space H, and Ω is a cyclic and separating vector of H of norm 1. (Cyclic means that is dense in H, and separating means that the map from M to is injective.) We write for the vector state of M, so that H is constructed from using the Gelfand–Naimark–Segal construction. Since Ω is separating, is faithful.

We can define a (not necessarily bounded) antilinear operator S0 on H with dense domain by setting for all m in M, and similarly we can define a (not necessarily bounded) antilinear operator F0 on H with dense domain M'Ω by setting for m in M′, where M′ is the commutant of M.

These operators are closable, and we denote their closures by S and F = S*. They have polar decompositions

where is an antilinear isometry of H called the modular conjugation and is a positive (hence, self-adjoint) and densely defined operator called the modular operator.

Commutation theorem

The main result of Tomita–Takesaki theory states that:

for all t and that

the commutant of M.

There is a 1-parameter group of modular automorphisms of M associated with the state , defined by .

The modular conjugation operator J and the 1-parameter unitary group satisfy

and

The Connes cocycle

The modular automorphism group of a von Neumann algebra M depends on the choice of state φ. Connes discovered that changing the state does not change the image of the modular automorphism in the outer automorphism group of M. More precisely, given two faithful states φ and ψ of M, we can find unitary elements ut of M for all real t such that

so that the modular automorphisms differ by inner automorphisms, and moreover ut satisfies the 1-cocycle condition

In particular, there is a canonical homomorphism from the additive group of reals to the outer automorphism group of M, that is independent of the choice of faithful state.

KMS states

The term KMS state comes from the Kubo–Martin–Schwinger condition in quantum statistical mechanics.

A KMS state on a von Neumann algebra M with a given 1-parameter group of automorphisms αt is a state fixed by the automorphisms such that for every pair of elements A, B of M there is a bounded continuous function F in the strip 0 ≤ Im(t) ≤ 1, holomorphic in the interior, such that

Takesaki and Winnink showed that any (faithful semi finite normal) state is a KMS state for the 1-parameter group of modular automorphisms . Moreover, this characterizes the modular automorphisms of .

(There is often an extra parameter, denoted by β, used in the theory of KMS states. In the description above this has been normalized to be 1 by rescaling the 1-parameter family of automorphisms.)

Structure of type III factors

We have seen above that there is a canonical homomorphism δ from the group of reals to the outer automorphism group of a von Neumann algebra, given by modular automorphisms. The kernel of δ is an important invariant of the algebra. For simplicity assume that the von Neumann algebra is a factor. Then the possibilities for the kernel of δ are:

  • The whole real line. In this case δ is trivial and the factor is type I or II.
  • A proper dense subgroup of the real line. Then the factor is called a factor of type III0.
  • A discrete subgroup generated by some x > 0. Then the factor is called a factor of type IIIλ with 0 < λ = exp(−2π/x) < 1, or sometimes a Powers factor.
  • The trivial group 0. Then the factor is called a factor of type III1. (This is in some sense the generic case.)

Left Hilbert algebras

The main results of Tomita–Takesaki theory were proved using left and right Hilbert algebras.[2]

A left Hilbert algebra is an algebra with involution xx and an inner product (·,·) such that

  1. Left multiplication by a fixed a is a bounded operator.
  2. ♯ is the adjoint; in other words (xy, z) = (y, xz).
  3. The involution is preclosed.
  4. The subalgebra spanned by all products xy is dense in w.r.t. the inner product.

A right Hilbert algebra is defined similarly (with an involution ♭) with left and right reversed in the conditions above.

A (unimodular) Hilbert algebra is a left Hilbert algebra for which ♯ is an isometry, in other words (x, y) = (y, x). In this case the involution is denoted by x* instead of x and coincides with modular conjugation J. This is the special case of Hilbert algebras. The modular operator is trivial and the corresponding von Neumann algebra is a direct sum of type I and type II von Neumann algebras.

Examples:

  • If M is a von Neumann algebra acting on a Hilbert space H with a cyclic separating unit vector v, then put = Mv and define (xv)(yv) = xyv and (xv) = x*v. The vector v is the identity of , so is a unital left Hilbert algebra.[3]
  • If G is a locally compact group, then the vector space of all continuous complex functions on G with compact support is a right Hilbert algebra if multiplication is given by convolution, and x(g) = x(g−1)*.[3]

For a fixed left Hilbert algebra , let H be its Hilbert space completion. Left multiplication by x yields a bounded operator λ(x) on H and hence a *-homomorphism λ of into B(H). The *-algebra generates the von Neumann algebra

Tomita's key discovery concerned the remarkable properties of the closure of the operator and its polar decomposition. If S denotes this closure (a conjugate-linear unbounded operator), let Δ = S* S, a positive unbounded operator. Let S = J Δ1/2 denote its polar decomposition. Then J is a conjugate-linear isometry satisfying[4]

and .

Δ is called the modular operator and J the modular conjugation.

In Takesaki (2003, pp. 5–17), there is a self-contained proof of the main commutation theorem of Tomita-Takesaki:

and

The proof hinges on evaluating the operator integral:[5]

By the spectral theorem,[6] that is equivalent to proving the equality with ex replacing Δ; the identity for scalars follows by contour integration. It reflects the well-known fact that, with a suitable normalisation, the function is its own Fourier transform.

Notes

  1. ^ Takesaki 2003, pp. 38–39
  2. ^ Takesaki 2003, pp. 1–39
  3. ^ a b Takesaki 2003, p. 2
  4. ^ Takesaki 2003, p. 4
  5. ^ Takesaki 2003, pp. 15–16
  6. ^ Rudin 1991.

References

  • Borchers, H. J. (2000), "On revolutionizing quantum field theory with Tomita's modular theory", Journal of Mathematical Physics, 41 (6): 3604–3673, Bibcode:2000JMP....41.3604B, doi:10.1063/1.533323, MR 1768633
  • Bratteli, O.; Robinson, D.W. (1987), Operator Algebras and Quantum Statistical Mechanics 1, Second Edition, Springer-Verlag, ISBN 3-540-17093-6
  • Connes, Alain (1973), "Une classification des facteurs de type III" (PDF), Annales Scientifiques de l'École Normale Supérieure, 4e série, 6 (2): 133–252, doi:10.24033/asens.1247
  • Connes, Alain (1994), Non-commutative geometry, Boston, MA: Academic Press, ISBN 978-0-12-185860-5
  • Dixmier, Jacques (1981), von Neumann algebras, North-Holland Mathematical Library, vol. 27, translated by F. Jellet, Amsterdam: North-Holland, ISBN 978-0-444-86308-9, MR 0641217
  • Inoue, A. (2001) [1994], "Tomita–Takesaki theory", Encyclopedia of Mathematics, EMS Press
  • Longo, Roberto (1978), "A simple proof of the existence of modular automorphisms in approximately finite-dimensional von Neumann algebras", Pacific J. Math., 75: 199–205, doi:10.2140/pjm.1978.75.199, hdl:2108/19146
  • Nakano, Hidegorô (1950), "Hilbert algebras", The Tohoku Mathematical Journal, Second Series, 2: 4–23, doi:10.2748/tmj/1178245666, MR 0041362
  • Pedersen, G.K. (1979), C* algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, ISBN 0-12-549450-5
  • Rieffel, M.A.; van Daele, A. (1977), "A bounded operator approach to Tomita–Takesaki theory", Pacific J. Math., 69: 187–221, doi:10.2140/pjm.1977.69.187
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Shtern, A.I. (2001) [1994], "Hilbert algebra", Encyclopedia of Mathematics, EMS Press
  • Summers, S. J. (2006), "Tomita–Takesaki Modular Theory", in Françoise, Jean-Pierre; Naber, Gregory L.; Tsun, Tsou Sheung (eds.), Encyclopedia of mathematical physics, Academic Press/Elsevier Science, Oxford, arXiv:math-ph/0511034, Bibcode:2005math.ph..11034S, ISBN 978-0-12-512660-1, MR 2238867
  • Sunder, V. S. (1987), An Invitation to von Neumann Algebras, Universitext, Springer, doi:10.1007/978-1-4613-8669-8, ISBN 978-0-387-96356-3
  • Strătilă, Şerban; Zsidó, László (1979), Lectures on von Neumann algebras. Revision of the 1975 original., translated by Silviu Teleman, Tunbridge Wells: Abacus Press, ISBN 0-85626-109-2
  • Strătilă, Şerban (1981), Modular theory in operator algebras, translated by Şerban Strătilă, Tunbridge Wells: Abacus Press, ISBN 0-85626-190-4
  • Takesaki, M. (1970), Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes Math., vol. 128, Springer, doi:10.1007/BFb0065832, ISBN 978-3-540-04917-3
  • Takesaki, Masamichi (2003), Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Berlin, New York: Springer-Verlag, ISBN 978-3-540-42914-2, MR 1943006
  • Tomita, Minoru (1967), "On canonical forms of von Neumann algebras", Fifth Functional Analysis Sympos. (Tôhoku Univ., Sendai, 1967) (in Japanese), Tôhoku Univ., Sendai: Math. Inst., pp. 101–102, MR 0284822
  • Tomita, M. (1967), Quasi-standard von Neumann algebras, mimographed note, unpublished

Read other articles:

صاحب السمو الملكي الأمير خالد بن سلمان بن عبد العزيز آل سعود وزير الدفاع تولى المنصب27 سبتمبر 2022 العاهل سلمان بن عبد العزيز آل سعود محمد بن سلمان آل سعود   نائب وزير الدفاع في المنصب23 فبراير 2019 – 27 سبتمبر 2022 العاهل سلمان بن عبد العزيز آل سعود خالد بن بندر بن عبد العزيز آل س�...

 

Approach to ethics Part of a series onFeminist philosophy Major works A Vindication of the Rights of Woman (1792) The Subjection of Women (1869) The Origin of the Family, Private Property and the State (1884) The Second Sex (1949) The Feminine Mystique (1963) Sexual Politics (1969) The Dialectic of Sex (1970) Speculum of the Other Woman (1974) This Sex Which is Not One (1977) Gyn/Ecology (1978) Throwing Like a Girl (1980) In a Different Voice (1982) The Politics of Reality (1983) Wo...

 

Gmina Mszana DolnaNegara PolandiaProvinsiPolandia KecilPowiatLimanowaIbukotaMszana DolnaPemerintahan • Wali kotaBolesław ŻabaLuas • Total169,83 km2 (65,57 sq mi)Populasi (2006) • Total17,500 • Kepadatan100/km2 (270/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Postal code34-730Car platesKLISitus webhttp://www.mszana.pl/ Powiat Limanowa (Gmina Mszana Dolna) Gmina Mszana Dolna (bahasa Poland...

Liga Leumit 1972-1973 Competizione Liga Leumit Sport Calcio Edizione 32ª Organizzatore IFA Date dal 16 settembre 1972al 5 maggio 1973 Luogo  Israele Partecipanti 16 Risultati Vincitore Hakoah Ramat Gan(2º titolo) Retrocessioni Shimshon Tel AvivHapoel Marmorek Statistiche Miglior marcatore Moshe Romano (18) Incontri disputati 240 Gol segnati 513 (2,14 per incontro) Cronologia della competizione 1971-1972 1973-1974 Manuale La Liga Leumit 1972-1973 è stata la 32ª ediz...

 

American animated short film series This article is about the short film series starring Goofy. For the duology of feature films starring the character, see A Goofy Movie and An Extremely Goofy Movie. GoofyIntroductory title of the Goofy short film series.ProductioncompaniesWalt Disney Productions (1-44)Walt Disney Pictures (45)Walt Disney Animation Studios (45)Distributed byRKO Radio Pictures (1-44)[a]Walt Disney Studios Motion Pictures (45)CountryUnited StatesLanguageEnglish Goofy i...

 

Кудиалчайазерб. Qudyalçay Вид из города Губа Характеристика Длина 108 км Бассейн 799 км² Водоток Исток   (Т) (B)    • Местоположение Северный склон Туфандага  • Высота 3000 м  • Координаты 41°15′49″ с. ш. 48°19′25″ в. д.HGЯO Устье    (Т) (B) �...

Questa voce sugli argomenti film drammatici e film thriller è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. UnthinkableMichael Sheen in una scena del filmTitolo originaleUnthinkable Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2010 Durata97 min Rapporto1,85:1 Generethriller, drammatico RegiaGregor Jordan SceneggiaturaPeter Woodward ProduttoreMarco Weber, Caldecot Chubb, Will...

 

1976 studio album by Joe CockerStingrayStudio album by Joe CockerReleasedApril 23, 1976Recorded1975StudioDynamic Sound Studios Kingston, JamaicaGenreRock, reggaeLength46:25LabelA&M[1]ProducerRob Fraboni[2]Joe Cocker chronology The Best of the Early Joe Cocker(1976) Stingray(1976) Live in L.A.(1976) Professional ratingsReview scoresSourceRatingAllMusic[3]Christgau's Record GuideC+[4]The Encyclopedia of Popular Music[5]MusicHound Rock: The Es...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

I liga 1961-1962Dettagli della competizioneSport Pallacanestro OrganizzatoreI liga Federazione PZKosz. Squadre12 VerdettiCampione Wisła Cracovia(2º titolo) Retrocessioni Społem Łódź Start Lublino Miglior marcatore Ryszard Olszewski Cronologia della competizioneed. successiva →     ← ed. precedente Modifica dati su Wikidata · Manuale La I liga 1961-1962 è stata la 28ª edizione del massimo campionato polacco di pallacanestro maschile. La v...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the articl...

 

American politician (born 1957) For other people named Katherine Harris, see Katherine Harris (disambiguation). Katherine HarrisMember of the U.S. House of Representativesfrom Florida's 13th districtIn officeJanuary 3, 2003 – January 3, 2007Preceded byDan MillerSucceeded byVern Buchanan23rd Secretary of State of FloridaIn officeJanuary 5, 1999 – August 2, 2002GovernorJeb BushPreceded bySandra MorthamSucceeded byJames SmithMember of the Florida Senatefrom the ...

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

 

Tercera División de España - Grupo XVI Datos generalesSede  La Rioja Navarra País VascoPrimera edición Temporada 2004-05Última edición Temporada 2020-21Organizador Federación Riojana de FútbolDatos estadísticosParticipantes 22Ascenso Segunda División B (2004-2020) Segunda División RFEF (2020-21)[1]​Descenso Regional Preferente de La RiojaClasificación a Copa del ReyCopa RFEF Cronología Grupo XVI Grupo XVI [editar datos en Wikidata] El Grupo XVI de T...

 

كأس السوبر الألماني 2012 بايرن ميونخ بوروسيا دورتموند 2 1 التاريخ12 أغسطس 2012الملعبأليانز أرينا، ميونخالحكممايكل وينر (أوتنشتاين)الحضور69,000الطقسغائم → 2011 2013 ← كأس السوبر الألماني 2012 هو النسخة الثالثة من كأس السوبر الألماني تحت مسمى DFL-Supercup، وهي مسابقة تقام سنويًا لتجمع بين بط...

هذه المقالة تتحدث عن نظام التشغيل. إذا أردت متصفح الويب، فشاهد جوجل كروم. كروم أو إسالشعارمعلومات عامةنوع توزيعة لينكس المنصة إكس 86 — إكس86-64 — بنية آرم النموذج المصدري حقوق التأليف والنشر محفوظة المطورون جوجل المدونة الرسمية chrome.blogspot.com (النرويجية) موقع الويب goog...

 

У Вікіпедії є статті про інші значення цього терміна: Оптимізація. Оптиміза́ція (англ. optimization, optimisation)[1] чи унайкра́щення[2] — процес надання будь-чому найвигідніших характеристик, співвідношень (наприклад, оптимізація виробничих процесів і виробництва, енерг�...

 

American lawyer & politician (born 1969) Linda SánchezVice Chair of the House Democratic CaucusIn officeJanuary 3, 2017 – January 3, 2019LeaderNancy PelosiPreceded byJoe CrowleySucceeded byKatherine ClarkMember of the U.S. House of Representativesfrom CaliforniaIncumbentAssumed office January 3, 2003Preceded bySteve Horn (redistricting)Constituency39th district (2003–2013)38th district (2013–present) Personal detailsBornLinda Teresa Sánchez (1969-01-28) Ja...

Questa voce o sezione sull'argomento fumettisti giapponesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Il duo Yudetamago; A sinistra Takashi Shimada, a destra Yoshinori Nakai Takashi Shimada (嶋田 隆司?, Shimada Takashi; Osaka, 28 ottobre 1960) e  Yoshinori Nakai (中井 義則?, Nakai Yoshinori; Osaka, 11 gennaio 1961) sono due autori di fu...

 

Pour les articles homonymes, voir Mississippi. Mississippi Sceau du Mississippi. Drapeau du Mississippi. Carte des États-Unis avec le Mississippi en rouge.SurnomThe Magnolia StateEn français : « L'État du Magnolia ».DeviseVirtute et armis (latin)« Par le courage et les armes ». Administration Pays États-Unis Capitale Jackson Adhésion à l’Union 10 décembre 1817 (206 ans) (20e État) Gouverneur Tate Reeves (R) Sénateurs Cindy Hyde-Smith (R)Roger...