The different dual topologies for a given dual pair are characterized by the Mackey–Arens theorem. All locally convex topologies with their continuous dual are trivially a dual pair and the locally convex topology is a dual topology.
Several topological properties depend only on the dual pair and not on the chosen dual topology and thus it is often possible to substitute a complicated dual topology by a simpler one.
(If a locally convex topology on is not a dual topology, then either is not surjective or it is ill-defined since the linear functional is not continuous on for some .)
Properties
Theorem (by Mackey): Given a dual pair, the bounded sets under any dual topology are identical.
Under any dual topology the same sets are barrelled.