Bounded operator

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces (a special type of TVS), then is bounded if and only if there exists some such that for all The smallest such is called the operator norm of and denoted by A linear operator between normed spaces is continuous if an only if it is bounded.

The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces.

Outside of functional analysis, when a function is called "bounded" then this usually means that its image is a bounded subset of its codomain. A linear map has this property if and only if it is identically Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in this abstract sense (of having a bounded image).

In normed vector spaces

Every bounded operator is Lipschitz continuous at

Equivalence of boundedness and continuity

A linear operator between normed spaces is bounded if and only if it is continuous.

Proof

Suppose that is bounded. Then, for all vectors with nonzero we have Letting go to zero shows that is continuous at Moreover, since the constant does not depend on this shows that in fact is uniformly continuous, and even Lipschitz continuous.

Conversely, it follows from the continuity at the zero vector that there exists a such that for all vectors with Thus, for all non-zero one has This proves that is bounded. Q.E.D.

In topological vector spaces

A linear operator between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then is bounded in A subset of a TVS is called bounded (or more precisely, von Neumann bounded) if every neighborhood of the origin absorbs it. In a normed space (and even in a seminormed space), a subset is von Neumann bounded if and only if it is norm bounded. Hence, for normed spaces, the notion of a von Neumann bounded set is identical to the usual notion of a norm-bounded subset.

Continuity and boundedness

Every sequentially continuous linear operator between TVS is a bounded operator.[1] This implies that every continuous linear operator between metrizable TVS is bounded. However, in general, a bounded linear operator between two TVSs need not be continuous.

This formulation allows one to define bounded operators between general topological vector spaces as an operator which takes bounded sets to bounded sets. In this context, it is still true that every continuous map is bounded, however the converse fails; a bounded operator need not be continuous. This also means that boundedness is no longer equivalent to Lipschitz continuity in this context.

If the domain is a bornological space (for example, a pseudometrizable TVS, a Fréchet space, a normed space) then a linear operators into any other locally convex spaces is bounded if and only if it is continuous. For LF spaces, a weaker converse holds; any bounded linear map from an LF space is sequentially continuous.

If is a linear operator between two topological vector spaces and if there exists a neighborhood of the origin in such that is a bounded subset of then is continuous.[2] This fact is often summarized by saying that a linear operator that is bounded on some neighborhood of the origin is necessarily continuous. In particular, any linear functional that is bounded on some neighborhood of the origin is continuous (even if its domain is not a normed space).

Bornological spaces

Bornological spaces are exactly those locally convex spaces for which every bounded linear operator into another locally convex space is necessarily continuous. That is, a locally convex TVS is a bornological space if and only if for every locally convex TVS a linear operator is continuous if and only if it is bounded.[3]

Every normed space is bornological.

Characterizations of bounded linear operators

Let be a linear operator between topological vector spaces (not necessarily Hausdorff). The following are equivalent:

  1. is (locally) bounded;[3]
  2. (Definition): maps bounded subsets of its domain to bounded subsets of its codomain;[3]
  3. maps bounded subsets of its domain to bounded subsets of its image ;[3]
  4. maps every null sequence to a bounded sequence;[3]
    • A null sequence is by definition a sequence that converges to the origin.
    • Thus any linear map that is sequentially continuous at the origin is necessarily a bounded linear map.
  5. maps every Mackey convergent null sequence to a bounded subset of [note 1]
    • A sequence is said to be Mackey convergent to the origin in if there exists a divergent sequence of positive real number such that is a bounded subset of

if and are locally convex then the following may be add to this list:

  1. maps bounded disks into bounded disks.[4]
  2. maps bornivorous disks in into bornivorous disks in [4]

if is a bornological space and is locally convex then the following may be added to this list:

  1. is sequentially continuous at some (or equivalently, at every) point of its domain.[5]
    • A sequentially continuous linear map between two TVSs is always bounded,[1] but the converse requires additional assumptions to hold (such as the domain being bornological and the codomain being locally convex).
    • If the domain is also a sequential space, then is sequentially continuous if and only if it is continuous.
  2. is sequentially continuous at the origin.

Examples

  • Any linear operator between two finite-dimensional normed spaces is bounded, and such an operator may be viewed as multiplication by some fixed matrix.
  • Any linear operator defined on a finite-dimensional normed space is bounded.
  • On the sequence space of eventually zero sequences of real numbers, considered with the norm, the linear operator to the real numbers which returns the sum of a sequence is bounded, with operator norm 1. If the same space is considered with the norm, the same operator is not bounded.
  • Many integral transforms are bounded linear operators. For instance, if is a continuous function, then the operator defined on the space of continuous functions on endowed with the uniform norm and with values in the space with given by the formula is bounded. This operator is in fact a compact operator. The compact operators form an important class of bounded operators.
  • The Laplace operator (its domain is a Sobolev space and it takes values in a space of square-integrable functions) is bounded.
  • The shift operator on the Lp space of all sequences of real numbers with is bounded. Its operator norm is easily seen to be

Unbounded linear operators

Let be the space of all trigonometric polynomials on with the norm

The operator that maps a polynomial to its derivative is not bounded. Indeed, for with we have while as so is not bounded.

Properties of the space of bounded linear operators

The space of all bounded linear operators from to is denoted by .

  • is a normed vector space.
  • If is Banach, then so is ; in particular, dual spaces are Banach.
  • For any the kernel of is a closed linear subspace of .
  • If is Banach and is nontrivial, then is Banach.

See also

References

  1. ^ Proof: Assume for the sake of contradiction that converges to but is not bounded in Pick an open balanced neighborhood of the origin in such that does not absorb the sequence Replacing with a subsequence if necessary, it may be assumed without loss of generality that for every positive integer The sequence is Mackey convergent to the origin (since is bounded in ) so by assumption, is bounded in So pick a real such that for every integer If is an integer then since is balanced, which is a contradiction. Q.E.D. This proof readily generalizes to give even stronger characterizations of " is bounded." For example, the word "such that is a bounded subset of " in the definition of "Mackey convergent to the origin" can be replaced with "such that in "
  1. ^ a b Wilansky 2013, pp. 47–50.
  2. ^ Narici & Beckenstein 2011, pp. 156–175.
  3. ^ a b c d e Narici & Beckenstein 2011, pp. 441–457.
  4. ^ a b Narici & Beckenstein 2011, p. 444.
  5. ^ Narici & Beckenstein 2011, pp. 451–457.

Bibliography

  • "Bounded operator", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Kreyszig, Erwin: Introductory Functional Analysis with Applications, Wiley, 1989
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.

Read other articles:

Untuk kegunaan lain, lihat Paron (disambiguasi). Paron Paron atau landasan adalah alat pengolahan logam yang berupa sebongkah logam besar (biasanya baja tempa atau cor), dengan permukaan atas yang datar. Di atas alat ini, objek lain ditempa atau dikerjakan. Paron sangat praktis dan sangat masif digunakan, karena makin lembam, makin efisien pemindahan energi dari alat pemukul ke benda kerja. Dalam banyak kasus, paron digunakan sebagai alat tempa. Sebelum ditemukan las modern, alat ini adalah a...

 

Gambaran pegunungan Arkhyz. Kaukasus Besar (Rusia: Большой Кавказcode: ru is deprecated , Azerbaijan: Böyük Qafqaz Dağları, Armenia - Մեծ Կովկաս, kadang-kadang diterjemahkan sebagai Kaukasus Utama) adalah pegunungan utama pada pegunungan Kaukasus. Pegunungan ini terbentang sekitar 1200 km antara semenanjung Taman di laut Hitam sampai semenanjung Absheron di laut Kaspia. Pegunungan ini terbagi menjadi tiga bagian Kaukasus Barat, dari laut Hitam sampai Gunung Elbr...

 

Cenderawasih Raja Belanda Oleh John Gould Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passeriformes Famili: Paradisaeidae Genus: Cicinnurus Spesies: C. magnificus x C. regius Sinonim Diphyllodes gulielmi III Meyer, 1875 Rhipidornis gulielmi III Diphyllodes (Rhipidornis) gulielmitertii Cenderawasih Raja Belanda, juga dikenal sebagai Cenderawasih Raja Willem III atau raja kecil yang indah,[1] adalah burung yang lahir dari kawin silang antara cenderawasi...

Kapal perusak kelas Zumwalt USS Zumwalt menjalani uji laik pada Desember 2015 Tentang kelas Pembangun:Bath Iron WorksOperator: United States NavyDidahului oleh:Kapal perusak kelas Arleigh BurkeDigantikan oleh:Arleigh Burke Flight IIIBiaya:*Biaya program $22,5 miliar (FY15)[1] $4,24M per unit (tak termasuk litbang) hingga 2016[2]Bertugas:15 Oktober 2016[3]Rencana:32Selesai:3Batal:29Aktif:2 Ciri-ciri umum Jenis Kapal perusak berpeluru kendaliBerat benaman 15.742 to...

 

Professional American football team in Latrobe, Pennsylvania (1895-1909) Latrobe Athletic AssociationFounded1895Folded1909Based inLatrobe, Pennsylvania, United StatesLeagueWestern Pennsylvania CircuitTeam historyLatrobe Athletic Association (1895–1907)Team colorsOrange, maroon (1895)   Red, blue (1897–1900)     Red, green (1903–1907)   Nickname(s)LatrobersHead coachesRussell Aukerman (1895)John Brallier (1896)Walter Okeson (1897)Alfred E. Bull (1898)Russell...

 

American college basketball season 1922–23 Illinois Fighting Illini men's basketballConferenceBig Ten ConferenceRecord9–6 (7–5 Big Ten)Head coachJ. Craig RubyAssistant coachDavid M. Bullock (Trainer)[1]CaptainNorton HellstromHome arenaKenney GymSeasons← 1921–221923–24 → 1922–23 Big Ten Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT Iowa 11 – 1   .917 13 – 2   .867...

Wakil Bupati Kolaka UtaraPetahanaLowongsejak 22 Agustus 2022Masa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk19 Juni 2007; 16 tahun lalu (2007-06-19)Pejabat pertamaS.T. Suhariah MuinSitus webSitus web resmi Berikut adalah daftar Wakil Bupati Kolaka Utara secara definitif sejak tahun 2007. Nomor urut Wakil Bupati Potret Partai Awal Akhir Masa jabatan Periode Bupati Ref. 1   S.T. Suhariah Muin PNBK 19 Juni 2007 19 Juni 2012 5 tahun, 0 ha...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Seko Fofana Fofana with Lens in 2023Informasi pribadiNama lengkap Seko Mohamed FofanaTanggal lahir 7 Mei 1995 (umur 29)Tempat lahir Paris, FranceTinggi 183 m (600 ft 5 in)Posisi bermain MidfielderInformasi klubKlub saat ini Al NassrNomor 6Karier junior2004–2010 Paris FC2010–2013 Lorient2013–2014 Manchester CityKarier senior*Tahun Tim Tampil (Gol)2014–2016 Manchester City 0 (0)2014–2015 → Fulham (loan) 21 (1)2015–2016 → Bastia (loan) 32 (1)2016–2020 Udine...

مطار عبد الله يوسف   إياتا: GLK – ايكاو: HCMR موجز يخدم جالكعيو  البلد الصومال  الموقع مدج  الارتفاع 297 متر  إحداثيات 6°46′51″N 47°27′16″E / 6.7808777777778°N 47.454413888889°E / 6.7808777777778; 47.454413888889   الخريطة تعديل مصدري - تعديل   مطار عبد الله يوسف هو مطار داخلي يخدم مدين...

 

University in Ireland, founded as NIHE Limerick University of LimerickOllscoil LuimnighMottoEagna chun Gnímh (Irish)Motto in EnglishWisdom for ActionTypePublicEstablished• In 1972 as National Institute of Higher Education, Limerick. • In 1989 as the University of Limerick.ChancellorBrigid LaffanPresidentKerstin MeyAcademic staff498 (2016)Students17,645 (2023)[1]Undergraduates13,155 (2023)[2]Postgraduates4,490 (2023)[3]AddressNational Technological ParkLimeric...

 

Göteborgs universitet Engelska: University of GothenburgLatin: Universitas GothoburgensisMottoTradita innovare innovata tradereMotto på svenskaAtt förnya det överlämnade och lämna det förnyade vidare[1]Grundat1954, 1891 som Göteborgs högskolaÄgandeformStatlig myndighetRektorMalin BrobergLärarkår3 517 (2023)[3]Admin. personal2 073 (2023)Studerande53 624 studenter 2023 (28 462 helår)Säte Göteborg, SverigeMedlemskapEUA, EUTOPIAWebbplatswww.gu.se Entréfasaden i sen nyklassisk sti...

برج وضريح علاء الدينمعلومات عامةنوع المبنى برج وضريحالمكان ورامين[1][2][3] المنطقة الإدارية مقاطعة ورامين[1][2] البلد  إيرانأبرز الأحداثالافتتاح الرسمي 1289[2][3][4] الصفة التُّراثيَّةتصنيف تراثي المعالم الوطنية الإيرانية[1][2] (1932 – ) ا�...

 

مقاطعة هوبكنز     الإحداثيات 37°19′N 87°32′W / 37.31°N 87.54°W / 37.31; -87.54   [1] تاريخ التأسيس 9 ديسمبر 1806  سبب التسمية صموئيل هوبكينز  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى كنتاكي  العاصمة ماديسونفيل  خصائص جغرافية  المساحة 14...

 

هيلاس فيرونا الاسم الكامل نادي هيلاس فيرونا لكرة القدم اللقب Gialloblu (الأزرق الأصفر) تأسس عام 1903 (منذ 121 سنة) الملعب ملعب مارك أنتونيو بينتجوديفيرونا، إيطاليا(السعة: 39,211) البلد  إيطاليا الدوري الدوري الإيطالي الدرجة الأولى الإدارة الرئيس ماوريتسيو سييتي المدرب أندريا ماند...

If you leave a new message on this page, I will reply on this page unless you ask me to reply elsewhere. Archives Archive 1Archive 2Archive 3Archive 4Archive 5DABs and Admin MessagesDYK NominationsGA NominationsHyborian War/TFA/FACPlay-by-mail misc PBM Organizing After reorganizing the list page earlier today, I decided to go through the whole play-by-mail games category (well, not the video games) and sort everything there into categories. I skipped everything that you started or already edi...

 

List of events ← 1821 1820 1819 1818 1817 1822 in Ireland → 1823 1824 1825 1826 1827 Centuries: 17th 18th 19th 20th 21st Decades: 1800s 1810s 1820s 1830s 1840s See also:1822 in the United KingdomOther events of 1822 List of years in Ireland Events from the year 1822 in Ireland. Events 22 April – The Albion, a Black Ball Line trans-Atlantic packet, is driven ashore at Old Head of Kinsale with the loss of 46 of the 54 aboard.[1][2] 7 June – The Constitution; or, ...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Prize court – news · newspapers · books · scholar · JSTOR (April 2017) (Learn how and when to remove this message) British prize court in World War I A prize court is a court (or even a single individual, such as an ambassador or consul) authorized to consider whether prizes hav...

Questa voce sull'argomento cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Chandler ParsonsParsons con la maglia della nazionale di pallacanestro statunitenseNazionalità Stati Uniti Altezza206 cm Peso104[1] kg Pallacanestro RuoloAla Termine carriera2020 CarrieraGiovanili 2003-2007Lake Howell High School2007-2011 Florida Gators142 (1.452) Squadre di club 2011...

 

Georg AndersenGeorg Andersen nel 1995.Nazionalità Norvegia Altezza190 cm Peso112 kg Atletica leggera SpecialitàGetto del pesoLancio del disco SocietàIdrettsforeningen Urædd Termine carriera2008 Record Peso 20,86 m (1990) Peso 20,98 m (indoor – 1989) Disco 62,10 m (1986) CarrieraNazionale 1986-1995 Norvegia Palmarès Competizione Ori Argenti Bronzi Mondiali indoor 0 0 1 Europei 0 0 1 Europei indoor 0 0 1 Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Georg Ar...