Operator norm

In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it "lengthens" vectors.

Introduction and definition

Given two normed vector spaces and (over the same base field, either the real numbers or the complex numbers ), a linear map is continuous if and only if there exists a real number such that[1]

The norm on the left is the one in and the norm on the right is the one in . Intuitively, the continuous operator never increases the length of any vector by more than a factor of Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of one can take the infimum of the numbers such that the above inequality holds for all This number represents the maximum scalar factor by which "lengthens" vectors. In other words, the "size" of is measured by how much it "lengthens" vectors in the "biggest" case. So we define the operator norm of as

The infimum is attained as the set of all such is closed, nonempty, and bounded from below.[2]

It is important to bear in mind that this operator norm depends on the choice of norms for the normed vector spaces and .

Examples

Every real -by- matrix corresponds to a linear map from to Each pair of the plethora of (vector) norms applicable to real vector spaces induces an operator norm for all -by- matrices of real numbers; these induced norms form a subset of matrix norms.

If we specifically choose the Euclidean norm on both and then the matrix norm given to a matrix is the square root of the largest eigenvalue of the matrix (where denotes the conjugate transpose of ).[3] This is equivalent to assigning the largest singular value of

Passing to a typical infinite-dimensional example, consider the sequence space which is an Lp space, defined by

This can be viewed as an infinite-dimensional analogue of the Euclidean space Now consider a bounded sequence The sequence is an element of the space with a norm given by

Define an operator by pointwise multiplication:

The operator is bounded with operator norm

This discussion extends directly to the case where is replaced by a general space with and replaced by

Equivalent definitions

Let be a linear operator between normed spaces. The first four definitions are always equivalent, and if in addition then they are all equivalent:

If then the sets in the last two rows will be empty, and consequently their supremums over the set will equal instead of the correct value of If the supremum is taken over the set instead, then the supremum of the empty set is and the formulas hold for any

Importantly, a linear operator is not, in general, guaranteed to achieve its norm on the closed unit ball meaning that there might not exist any vector of norm such that (if such a vector does exist and if then would necessarily have unit norm ). R.C. James proved James's theorem in 1964, which states that a Banach space is reflexive if and only if every bounded linear functional achieves its norm on the closed unit ball.[4] It follows, in particular, that every non-reflexive Banach space has some bounded linear functional (a type of bounded linear operator) that does not achieve its norm on the closed unit ball.

If is bounded then[5] and[5] where is the transpose of which is the linear operator defined by

Properties

The operator norm is indeed a norm on the space of all bounded operators between and . This means

The following inequality is an immediate consequence of the definition:

The operator norm is also compatible with the composition, or multiplication, of operators: if , and are three normed spaces over the same base field, and and are two bounded operators, then it is a sub-multiplicative norm, that is:

For bounded operators on , this implies that operator multiplication is jointly continuous.

It follows from the definition that if a sequence of operators converges in operator norm, it converges uniformly on bounded sets.

Table of common operator norms

By choosing different norms for the codomain, used in computing , and the domain, used in computing , we obtain different values for the operator norm. Some common operator norms are easy to calculate, and others are NP-hard. Except for the NP-hard norms, all these norms can be calculated in operations (for an matrix), with the exception of the norm (which requires operations for the exact answer, or fewer if you approximate it with the power method or Lanczos iterations).

Computability of Operator Norms[6]
Co-domain
Domain Maximum norm of a column Maximum norm of a column Maximum norm of a column
NP-hard Maximum singular value Maximum norm of a row
NP-hard NP-hard Maximum norm of a row

The norm of the adjoint or transpose can be computed as follows. We have that for any then where are Hölder conjugate to that is, and

Operators on a Hilbert space

Suppose is a real or complex Hilbert space. If is a bounded linear operator, then we have and where denotes the adjoint operator of (which in Euclidean spaces with the standard inner product corresponds to the conjugate transpose of the matrix ).

In general, the spectral radius of is bounded above by the operator norm of :

To see why equality may not always hold, consider the Jordan canonical form of a matrix in the finite-dimensional case. Because there are non-zero entries on the superdiagonal, equality may be violated. The quasinilpotent operators is one class of such examples. A nonzero quasinilpotent operator has spectrum So while

However, when a matrix is normal, its Jordan canonical form is diagonal (up to unitary equivalence); this is the spectral theorem. In that case it is easy to see that

This formula can sometimes be used to compute the operator norm of a given bounded operator : define the Hermitian operator determine its spectral radius, and take the square root to obtain the operator norm of

The space of bounded operators on with the topology induced by operator norm, is not separable. For example, consider the Lp space which is a Hilbert space. For let be the characteristic function of and be the multiplication operator given by that is,

Then each is a bounded operator with operator norm 1 and

But is an uncountable set. This implies the space of bounded operators on is not separable, in operator norm. One can compare this with the fact that the sequence space is not separable.

The associative algebra of all bounded operators on a Hilbert space, together with the operator norm and the adjoint operation, yields a C*-algebra.

See also

Notes

  1. ^ Kreyszig, Erwin (1978), Introductory functional analysis with applications, John Wiley & Sons, p. 97, ISBN 9971-51-381-1
  2. ^ See e.g. Lemma 6.2 of Aliprantis & Border (2007).
  3. ^ Weisstein, Eric W. "Operator Norm". mathworld.wolfram.com. Retrieved 2020-03-14.
  4. ^ Diestel 1984, p. 6.
  5. ^ a b Rudin 1991, pp. 92–115.
  6. ^ section 4.3.1, Joel Tropp's PhD thesis, [1]

References

| list1 =
| group2 = Main results
| list2 = 
| group5 = Other results
| list5 = 
| group7 = Maps
| list7 = 
| group10 = Examples
| list10 = 


}}

Read other articles:

Italian professor, neuroscientist, experimental neurologist and medical neuropsychologist This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2023) Pasquale CalabreseBorn (1961-02-27) February 27, 1961 (age 63)NaplesNationalityItalianCitizenshipItalianKnown fordiagnosis of neuropsychological and behavioral disturbances in neuropsychiatric patients, focus on multiple s...

 

KintapDesaPeta lokasi Desa KintapNegara IndonesiaProvinsiKalimantan SelatanKabupatenTanah LautKecamatanKintapKode pos70883Kode Kemendagri63.01.07.2002 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Kintap adalah salah satu desa di Kecamatan Kintap, Kabupaten Tanah Laut, Provinsi Kalimantan Selatan, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, dan Pula...

 

У этого термина существуют и другие значения, см. K. Буквы со сходным начертанием: Κ · κ · К · к · ĸ Буква латиницы K Kk Изображение ◄ G H I J K L M N O ► ◄ g h i j k l m n o ► Характеристики Название K: latin capital letter kk: latin small letter k Юникод K: U+004Bk:...

Three-Ring MarriageSutradaraMarshall NeilanProduserHenry HobartDitulis olehThomas J. Geraghty Harvey F. Thew Dixie WillsonPemeranMary Astor Lloyd Hughes Lawford DavidsonSinematograferDavid KessonPenyuntingStuart HeislerPerusahaanproduksiFirst National PicturesDistributorFirst National PicturesTanggal rilis 10 Juni 1928 (1928-06-10) Durasi60 menitNegaraAmerika SerikatBahasaBisu (intertitel Inggris) Three-Ring Marriage juga dikenal sebagai 3-Ring Marriage adalah sebuah film drama bisu Ame...

 

Program Studi Teknik Sipil Universitas Kristen Petra Program Studi Teknik Sipil Universitas Kristen Petra didirikan pada tahun 1962 dan berada pada naungan Fakultas Teknik Sipil dan Perencanaan Universitas Kristen Petra. Sejarah Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Kristen Petra didirikan pada tanggal 15 September 1962. Pada awalnya Jurusan Teknik Sipil menempati gedung di Jalan Embong Kemiri No. 11 dan Jalan Indrapura, Surabaya. Kondisi ruang untuk perkuli...

 

Voce principale: Aurora Pro Patria 1919. Pro Patria et Libertate Sezione CalcioStagione 1952-1953Sport calcio Squadra Pro Patria Allenatore Cesare Pellegatta Serie A18º posto, retrocessa Maggiori presenzeCampionato: Uboldi (34) Miglior marcatoreCampionato: Bertoloni (13) 1951-1952 1953-1954 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Pro Patria et Libertate Sezione Calcio nelle competizioni ufficiali della stagione 1952-1953. Indice 1 Sta...

Social Democratic Party 社會民主黨SingkatanSDPKetua umumLu Hung-zhiDibentuk29 Maret 2015; 9 tahun lalu (2015-03-29)Kantor pusatTaipei, TaiwanIdeologiDemokrasi sosialNasionalisme TaiwanPosisi politikKiri tengahWarna  Merah jambuYuan Legislatif0 / 113 Wali Kotamadya0 / 6 Hakim/walikota0 / 16 Anggota Dewan1 / 912 Wali Kotapraja/Kota0 / 204 Situs webwww.sdparty.twPolitik Taiwan Partai Demokrat Sosial (Hanzi: 社會民主黨, bahasa Inggris: Social Democratic Party) adalah sebu...

 

Biologist who studies genetics and performs general research on genetic technologies and processes For the theory that psychological traits are hereditary, see geneticism. This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Geneticist – news · newspapers · books · scholar · JSTOR (April 2020) A genetic...

 

Indra Catri Bupati Agam ke-18Masa jabatan17 Februari 2016 – 17 Februari 2021WakilTrinda Farhan SatriaPendahuluJefrinal Arifin (Pj.)PenggantiMartias Wanto (Plh.)Andri WarmanMasa jabatan26 Oktober 2010 – 26 Oktober 2015WakilUmar (2010—2012)Irwan Fikri (2013—2015)PendahuluSurya Dharma Sabirin (Pj.)PenggantiSyafirman (Plh.) Informasi pribadiLahir4 April 1961 (umur 63)Bukittinggi, Sumatera BaratKebangsaanIndonesiaPartai politikPartai GerindraSuami/istriYennovita,...

For other uses, see Officium. Politics of ancient Rome Periods Roman Kingdom753–509 BC Roman Republic509–27 BC Roman Empire27 BC – AD 395 Principate27 BC – AD 284 DominateAD 284–641 WesternAD 395–476 EasternAD 395–1453 Timeline Constitution Kingdom Republic Sullan republic Empire Augustan reforms Late Empire Political institutions Imperium Collegiality Auctoritas Roman citizenship Cursus honorum Assemblies Centuriate Curiate Plebeian Tribal Ordinary magistrates Consul Praetor Qu...

 

2020年夏季奥林匹克运动会危地马拉代表團危地马拉国旗IOC編碼GUANOC危地马拉奥林匹克委员会網站www.cog.org.gt(西班牙文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員24參賽項目10个大项旗手开幕式:胡安·伊格納西奧·馬埃格利和Isabella Maegli(帆船)[1]闭幕式:Charles Fernández(现代五项)[2]�...

 

Soccer stadium at the United States Air Force Academy Cadet Soccer StadiumCadet Soccer StadiumLocation in ColoradoShow map of ColoradoCadet Soccer StadiumLocation in the United StatesShow map of the United StatesLocationColorado Springs, ColoradoCoordinates39°0′52″N 104°53′34″W / 39.01444°N 104.89278°W / 39.01444; -104.89278OwnerUnited States Air Force AcademyCapacity3,000 (2,000 seated)SurfaceKentucky BluegrassConstructionBroke groundMay 1995OpenedAugust 2...

Archaeological culture in Karabakh region Part of a series on the History of Azerbaijan Prehistory Stone Age  • Bronze Age  • Iron Age Shulaveri–Shomu culturec.6000–c.4000 BC Chalcolithic culture of Nakhchivanc.4945–c.3800 BC Leyla-Tepe culturec.4350–c.4000 BC Kura–Araxes culturec.3400–c.2000 BC Nakhchivan culturec.3000–c.2000 BC Talish–Mughan culturec.1400–c.700 BC Khojaly–Gadabay culturec.1300–c.700 BC Antiquity Kingdom of Iškuzac.700 B...

 

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Bilbong Streptocitta White-necked myna (Streptocitta albicollis)TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliSturnidaeGenusStreptocitta Bonaparte, 1850 lbs Streptocitta adalah genus burung jalak besar dalam keluarga Sturnidae . Kedua spesies tersebut memiliki bulu berwarna-warni dan ekor yang panjang, membuat mereka sangat mirip dengan burung kucica . Meskipun tidak berkerabat dekat dengan burung kucica sejati, oleh karena itu mereka pernah disebut sebagai burung kuci...

 

French general (1759–1815) Portrait by Jean-Urbain Guérin, 1802 Claude Jacques Lecourbe (French pronunciation: [klod ləkuʁb]; 22 February 1759 – 22 October 1815) was a French general during the French Revolutionary and Napoleonic wars. Biography Claude-Jacques Lecourbe, lieutenant-colonel of the 7th Jura Battalion, by Esprit-Aimé Libour (1834) Lecourbe was born in Besançon, Franche-Comté, on 22 February 1759, the son of Claude Guillaume Lecourbe, a cavalry officer, and Marie...

 

Three different devices for manipulating water One of many brands of water thief (a synthetic rubber fitting that attaches to an unthreaded faucet on one end and a common garden hose on the other) commonly available The term water thief refers to three devices – one ancient and two modern. A water thief is a synthetic rubber fitting that attaches to an unthreaded faucet (American English) / tap (British English) on one end and a common garden hose on the other. It is commonly used to f...

Judo competition Judoat the Games of the XXVI OlympiadVenueGeorgia World Congress CenterDates20 to 26 July 1996Competitors386 from 91 nations← 19922000 → Judo at the1996 Summer OlympicsMenWomen60 kg48 kg65 kg52 kg71 kg56 kg78 kg61 kg86 kg66 kg95 kg72 kg+95 kg+72 kgvte This page shows the final results of the Judo Competition at the 1996 Summer Olympics in Atlanta.[1] Medal table RankNationGoldSilverBronzeTotal1 Japan34182 France30363 Sou...

 

Branislaŭ SamojlaŭSamojlaŭ alla Freccia del Brabante 2015Nazionalità Bielorussia Altezza188 cm Peso75 kg Ciclismo SpecialitàStrada SquadraMinsk Cycling Club CarrieraSquadre di club 2004-2006Palazzago2006 Acqua & Saponestagista2007-2008 Acqua & Sapone2009 Amica Chips2009-2010 Quick-Step2011-2012 Movistar2013RCOP Belarus2014-2017 CCC Polkowice2018-Minsk Cycling Club Nazionale 2009- Bielorussia Statistiche aggiornate al gennaio 2018 Modifica da...