Functional derivative

In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative)[1] relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends.

In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integrand L of a functional, if a function f is varied by adding to it another function δf that is arbitrarily small, and the resulting integrand is expanded in powers of δf, the coefficient of δf in the first order term is called the functional derivative.

For example, consider the functional where f ′(x) ≡ df/dx. If f is varied by adding to it a function δf, and the resulting integrand L(x, f +δf, f ′+δf ′) is expanded in powers of δf, then the change in the value of J to first order in δf can be expressed as follows:[1][Note 1] where the variation in the derivative, δf was rewritten as the derivative of the variation (δf) ′, and integration by parts was used in these derivatives.

Definition

In this section, the functional differential (or variation or first variation)[Note 2] is defined. Then the functional derivative is defined in terms of the functional differential.

Functional differential

Suppose is a Banach space and is a functional defined on . The differential of at a point is the linear functional on defined[2] by the condition that, for all , where is a real number that depends on in such a way that as . This means that is the Fréchet derivative of at .

However, this notion of functional differential is so strong it may not exist,[3] and in those cases a weaker notion, like the Gateaux derivative is preferred. In many practical cases, the functional differential is defined[4] as the directional derivative Note that this notion of the functional differential can even be defined without a norm.

Functional derivative

In many applications, the domain of the functional is a space of differentiable functions defined on some space and is of the form for some function that may depend on , the value and the derivative . If this is the case and, moreover, can be written as the integral of times another function (denoted δF/δρ) then this function δF/δρ is called the functional derivative of F at ρ.[5][6] If is restricted to only certain functions (for example, if there are some boundary conditions imposed) then is restricted to functions such that continues to satisfy these conditions.

Heuristically, is the change in , so we 'formally' have , and then this is similar in form to the total differential of a function , where are independent variables. Comparing the last two equations, the functional derivative has a role similar to that of the partial derivative , where the variable of integration is like a continuous version of the summation index .[7] One thinks of δF/δρ as the gradient of F at the point ρ, so the value δF/δρ(x) measures how much the functional F will change if the function ρ is changed at the point x. Hence the formula is regarded as the directional derivative at point in the direction of . This is analogous to vector calculus, where the inner product of a vector with the gradient gives the directional derivative in the direction of .

Properties

Like the derivative of a function, the functional derivative satisfies the following properties, where F[ρ] and G[ρ] are functionals:[Note 3]

  • Linearity:[8] where λ, μ are constants.
  • Product rule:[9]
  • Chain rules:
    • If F is a functional and G another functional, then[10]
    • If G is an ordinary differentiable function (local functional) g, then this reduces to[11]

Determining functional derivatives

A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the Euler–Lagrange equation: indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the principle of least action in Lagrangian mechanics (18th century). The first three examples below are taken from density functional theory (20th century), the fourth from statistical mechanics (19th century).

Formula

Given a functional and a function that vanishes on the boundary of the region of integration, from a previous section Definition,

The second line is obtained using the total derivative, where ∂f /∂∇ρ is a derivative of a scalar with respect to a vector.[Note 4]

The third line was obtained by use of a product rule for divergence. The fourth line was obtained using the divergence theorem and the condition that on the boundary of the region of integration. Since is also an arbitrary function, applying the fundamental lemma of calculus of variations to the last line, the functional derivative is

where ρ = ρ(r) and f = f (r, ρ, ∇ρ). This formula is for the case of the functional form given by F[ρ] at the beginning of this section. For other functional forms, the definition of the functional derivative can be used as the starting point for its determination. (See the example Coulomb potential energy functional.)

The above equation for the functional derivative can be generalized to the case that includes higher dimensions and higher order derivatives. The functional would be,

where the vector rRn, and (i) is a tensor whose ni components are partial derivative operators of order i, [Note 5]

An analogous application of the definition of the functional derivative yields

In the last two equations, the ni components of the tensor are partial derivatives of f with respect to partial derivatives of ρ, where , and the tensor scalar product is, [Note 6]

Examples

Thomas–Fermi kinetic energy functional

The Thomas–Fermi model of 1927 used a kinetic energy functional for a noninteracting uniform electron gas in a first attempt of density-functional theory of electronic structure: Since the integrand of TTF[ρ] does not involve derivatives of ρ(r), the functional derivative of TTF[ρ] is,[12]

Coulomb potential energy functional

For the electron-nucleus potential, Thomas and Fermi employed the Coulomb potential energy functional

Applying the definition of functional derivative, So,

For the classical part of the electron-electron interaction, Thomas and Fermi employed the Coulomb potential energy functional From the definition of the functional derivative, The first and second terms on the right hand side of the last equation are equal, since r and r′ in the second term can be interchanged without changing the value of the integral. Therefore, and the functional derivative of the electron-electron Coulomb potential energy functional J[ρ] is,[13]

The second functional derivative is

Weizsäcker kinetic energy functional

In 1935 von Weizsäcker proposed to add a gradient correction to the Thomas-Fermi kinetic energy functional to make it better suit a molecular electron cloud: where Using a previously derived formula for the functional derivative, and the result is,[14]

Entropy

The entropy of a discrete random variable is a functional of the probability mass function.

Thus, Thus,

Exponential

Let

Using the delta function as a test function,

Thus,

This is particularly useful in calculating the correlation functions from the partition function in quantum field theory.

Functional derivative of a function

A function can be written in the form of an integral like a functional. For example, Since the integrand does not depend on derivatives of ρ, the functional derivative of ρ(r) is,

Functional derivative of iterated function

The functional derivative of the iterated function is given by: and

In general:

Putting in N = 0 gives:

Using the delta function as a test function

In physics, it is common to use the Dirac delta function in place of a generic test function , for yielding the functional derivative at the point (this is a point of the whole functional derivative as a partial derivative is a component of the gradient):[15]

This works in cases when formally can be expanded as a series (or at least up to first order) in . The formula is however not mathematically rigorous, since is usually not even defined.

The definition given in a previous section is based on a relationship that holds for all test functions , so one might think that it should hold also when is chosen to be a specific function such as the delta function. However, the latter is not a valid test function (it is not even a proper function).

In the definition, the functional derivative describes how the functional changes as a result of a small change in the entire function . The particular form of the change in is not specified, but it should stretch over the whole interval on which is defined. Employing the particular form of the perturbation given by the delta function has the meaning that is varied only in the point . Except for this point, there is no variation in .

Notes

  1. ^ According to Giaquinta & Hildebrandt (1996), p. 18, this notation is customary in physical literature.
  2. ^ Called first variation in (Giaquinta & Hildebrandt 1996, p. 3), variation or first variation in (Courant & Hilbert 1953, p. 186), variation or differential in (Gelfand & Fomin 2000, p. 11, § 3.2) and differential in (Parr & Yang 1989, p. 246).
  3. ^ Here the notation is introduced.
  4. ^ For a three-dimensional Cartesian coordinate system, where and , , are unit vectors along the x, y, z axes.
  5. ^ For example, for the case of three dimensions (n = 3) and second order derivatives (i = 2), the tensor (2) has components, where and can be .
  6. ^ For example, for the case n = 3 and i = 2, the tensor scalar product is, where .

Footnotes

References

  • Courant, Richard; Hilbert, David (1953). "Chapter IV. The Calculus of Variations". Methods of Mathematical Physics. Vol. I (First English ed.). New York, New York: Interscience Publishers, Inc. pp. 164–274. ISBN 978-0471504474. MR 0065391. Zbl 0001.00501..
  • Frigyik, Béla A.; Srivastava, Santosh; Gupta, Maya R. (January 2008), Introduction to Functional Derivatives (PDF), UWEE Tech Report, vol. UWEETR-2008-0001, Seattle, WA: Department of Electrical Engineering at the University of Washington, p. 7, archived from the original (PDF) on 2017-02-17, retrieved 2013-10-23.
  • Gelfand, I. M.; Fomin, S. V. (2000) [1963], Calculus of variations, translated and edited by Richard A. Silverman (Revised English ed.), Mineola, N.Y.: Dover Publications, ISBN 978-0486414485, MR 0160139, Zbl 0127.05402.
  • Giaquinta, Mariano; Hildebrandt, Stefan (1996), Calculus of Variations 1. The Lagrangian Formalism, Grundlehren der Mathematischen Wissenschaften, vol. 310 (1st ed.), Berlin: Springer-Verlag, ISBN 3-540-50625-X, MR 1368401, Zbl 0853.49001.
  • Greiner, Walter; Reinhardt, Joachim (1996), "Section 2.3 – Functional derivatives", Field quantization, With a foreword by D. A. Bromley, Berlin–Heidelberg–New York: Springer-Verlag, pp. 36–38, ISBN 3-540-59179-6, MR 1383589, Zbl 0844.00006.
  • Parr, R. G.; Yang, W. (1989). "Appendix A, Functionals". Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press. pp. 246–254. ISBN 978-0195042795.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Brainware – berita · surat kabar · buku · cendekiawan · JSTOR Brainware adalah orang yang menggunakan, memakai ataupun mengoprasikan perangkat komputer. Contoh dari brainware yaitu programmer, netter (se...

 

Guasila Guasìba, GuasìllaKomuneComune di GuasilaLokasi Guasila di Provinsi Sardinia SelatanNegara ItaliaWilayah SardiniaProvinsiSardinia Selatan (SU)Pemerintahan • Wali kotaPaola CasulaLuas • Total43,51 km2 (16,80 sq mi)Ketinggian210 m (690 ft)Populasi (2016) • Total2,676[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos09040Kode area telepon070Situs webhttp://www.comune.guasila.ca.it Gu...

 

Radio station in Waverly, AlabamaWELL-FMWaverly, AlabamaBroadcast areaAuburn-Opelika, Alabama Columbus, GeorgiaFrequency88.7 MHzBrandingPraise 88.7'ProgrammingFormatChristian ContemporaryOwnershipOwnerAlabama Christian Radio(Alabama Christian Radio, Inc.)Sister stationsWJHOHistoryFirst air date1991Former call signsWDVI (1989-1997)[1]Technical informationFacility ID64562ClassC1ERP60,000 wattsHAAT129 meters (423 ft)Transmitter coordinates32°51′20″N 85°46′31″W / &#...

العلاقات الليبية الموريشيوسية ليبيا موريشيوس   ليبيا   موريشيوس تعديل مصدري - تعديل   العلاقات الليبية الموريشيوسية هي العلاقات الثنائية التي تجمع بين ليبيا وموريشيوس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Budaya Tionghoa-Indonesia – berita · surat kabar · buku · cendekiawan · JSTOR Budaya Tionghoa-Indonesia merujuk kepada jenis kebudayaan peranakan Tionghoa yang berakulturasi dan/atau berasimilasi dengan kebud...

 

History of Communism in Peru This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Communism in Peru – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this message)Part of a series onCommunism Concepts Anti-capitalism Class conflict Class consciousness Classless society Collective leadership Communist party Communist rev...

Place in Centre-Est Region, Burkina FasoNingareCountry Burkina FasoRegionCentre-Est RegionProvinceBoulgou ProvinceDepartmentTenkodogo DepartmentPopulation (2005 est.) • Total2,160 Ningare is a town in the Tenkodogo Department of Boulgou Province in south-eastern Burkina Faso. As of 2005, the town has a population of 2,160.[1] References ^ Burkinabé government inforoute communale Archived 2008-10-11 at the Wayback Machine vte Boulgou ProvinceCapital: TenkodogoBag...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Judy M...

عنت تقويم أمازيغيالمحافظة السامية للأمازيغيةشهر يناير فورار ماقو يونيو يوليو أغسطس شوتمبر توبر نوفمبر دوجمبر تقويم هجري تقويم ميلادي اللغات الأمازيغية

 

International political forum of Middle-European states Three Seas Initiative Logo Membership Austria Bulgaria Croatia Czech Republic Estonia Greece Hungary Latvia Lithuania Poland Romania Slovakia SloveniaPartner-participant: Moldova UkraineEstablishment2015Area• Total1,218,975 km2 (470,649 sq mi)Population• Estimate 110,150,445[1]• Density90/km2 (233.1/sq mi)GDP (nominal)2022 estimate• Total €2.295 trillion[2]•...

 

County in North Carolina, United States County in North CarolinaCherokee CountyCountyCherokee County Courthouse in Murphy SealLocation within the U.S. state of North CarolinaNorth Carolina's location within the U.S.Coordinates: 35°08′N 84°04′W / 35.14°N 84.06°W / 35.14; -84.06Country United StatesState North CarolinaFounded1839Named forCherokee IndiansSeatMurphyLargest communityAndrewsArea • Total466.67 sq mi (1,208.7 km2)&#...

1997 National Football League season 1997 NFL seasonRegular seasonDurationAugust 31 – December 22, 1997PlayoffsStart dateDecember 27, 1997AFC ChampionsDenver BroncosNFC ChampionsGreen Bay PackersSuper Bowl XXXIIDateJanuary 25, 1998SiteQualcomm Stadium, San Diego, California ChampionsDenver BroncosPro BowlDateFebruary 1, 1998SiteAloha Stadium ← 1996 NFL seasons 1998 → ColtsPatriotsBillsDolphinsJetsBengalsRavensOilersSteelersJaguarsBroncosChiefsRaidersChargersSeahawksclass=notpage...

 

Potret Augustus Keppel oleh Sir Joshua Reynolds Laksamana Inggris Augustus Keppel (25 April 1725 – 2 Oktober 1786) merupakan seorang perwira angkatan laut dan parlemen Inggris. Dia bertugas sebagai komandan Angkatan Laut Kerajaan selama Perang Tujuh Tahun dan Perang Kemerdekaan Amerika Serikat. Pada 1782, ia menjadi First Lord of the Admiralty dan vicomte Keppel serta anggota Dewan Penasehat raja. Keppel meninggal pada 2 Oktober 1786, dia tidak menikah dan tanpa keturunan.[1] Refere...

 

Colobothea hirtipes Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Colobothea Spesies: Colobothea hirtipes Colobothea hirtipes adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Colobothea, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kay...

Batalla de Guinegate Guerra de la Liga de CambraiParte de Guerra de la Liga de Cambrai Fecha 16 de agosto de 1513Lugar Enguinegatte, Paso de Calais( Francia)Coordenadas 50°34′29″N 2°14′10″E / 50.5747, 2.2361Resultado Victoria inglesaBeligerantes Reino de Inglaterra Reino de Francia Comandantes Enrique VIII de Inglaterra Jacques de la Palice Fuerzas en combate 24.000 ingleses y 7.000 mercenarios extranjeros[1]​ 11.000 infantes y 4.000 jinetes[1]​ Baja...

 

John LegendJohn Legend tampil di MGM Studio tahun 2015LahirJohn Roger Stephens28 Desember 1978 (umur 45)Springfield, Ohio, Amerika SerikatKebangsaanAmerika SerikatAlmamaterUniversitas PennsylvaniaPekerjaanPenyanyipenulis laguaktorTahun aktif2000–sekarangSuami/istriChrissy Teigen ​(m. 2013)​Anak4Karier musikGenrePopR&BHip HopjazzInstrumenVokalpianoLabelGOOD MusicSony UrbanRepublic RecordColumbiaArtis terkaitJay ZAlicia KeysKanye WestSitus webjohnle...

 

ياركو نييمينن معلومات شخصية الميلاد 23 يوليو 1981 (العمر 43 سنة)Masku, فنلندا الطول 185 سم (6 قدم 1 بوصة) الإقامة Masku, فناندا الجنسية فنلندا[1][2][3]  الاسم المستعار Jakke الوزن 78 كجم (172 باوند) استعمال اليد اليد اليسرى; الضربة الخلفية باليدين الزوجة أنو نيمينن (يونيو 2005–)  ا...

2015 video game 2015 video gameDomiNationsDomiNations LogoDeveloper(s)NexonBig Huge GamesPublisher(s)Nexon (2015-2019)Big Huge Games (2020-present)Platform(s)AndroidiOSiPadOSReleaseApril 1, 2015 (2015-04-01)Genre(s)StrategyMode(s)Massively multiplayer online game DomiNations is a 2015 freemium mobile massively multiplayer strategy video game developed and published by Big Huge Games.[1] The game was released on April 1, 2015. Gameplay A home base in DomiNations. The pla...

 

المرجل الأسود (فيلم)The Black Cauldron (بالإنجليزية) معلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني  القائمة ... قصة تقدم في العمر — فيلم مغامرة[1] — فيلم مقتبس من عمل أدبي — فيلم فنتازيا — فنتازيا مظلمة تاريخ الصدور 24 يوليو 1985[2] (الولايات المتحدة) مدة العرض 77 دقيقة اللغ�...