Functional (mathematics)

The arc length functional has as its domain the vector space of rectifiable curves – a subspace of – and outputs a real scalar. This is an example of a non-linear functional.
The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b.

In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).

This article is mainly concerned with the second concept, which arose in the early 18th century as part of the calculus of variations. The first concept, which is more modern and abstract, is discussed in detail in a separate article, under the name linear form. The third concept is detailed in the computer science article on higher-order functions.

In the case where the space is a space of functions, the functional is a "function of a function",[6] and some older authors actually define the term "functional" to mean "function of a function". However, the fact that is a space of functions is not mathematically essential, so this older definition is no longer prevalent.[citation needed]

The term originates from the calculus of variations, where one searches for a function that minimizes (or maximizes) a given functional. A particularly important application in physics is search for a state of a system that minimizes (or maximizes) the action, or in other words the time integral of the Lagrangian.

Details

Duality

The mapping is a function, where is an argument of a function At the same time, the mapping of a function to the value of the function at a point is a functional; here, is a parameter.

Provided that is a linear function from a vector space to the underlying scalar field, the above linear maps are dual to each other, and in functional analysis both are called linear functionals.

Definite integral

Integrals such as form a special class of functionals. They map a function into a real number, provided that is real-valued. Examples include

  • the area underneath the graph of a positive function
  • norm of a function on a set
  • the arclength of a curve in 2-dimensional Euclidean space

Inner product spaces

Given an inner product space and a fixed vector the map defined by is a linear functional on The set of vectors such that is zero is a vector subspace of called the null space or kernel of the functional, or the orthogonal complement of denoted

For example, taking the inner product with a fixed function defines a (linear) functional on the Hilbert space of square integrable functions on

Locality

If a functional's value can be computed for small segments of the input curve and then summed to find the total value, the functional is called local. Otherwise it is called non-local. For example: is local while is non-local. This occurs commonly when integrals occur separately in the numerator and denominator of an equation such as in calculations of center of mass.

Functional equations

The traditional usage also applies when one talks about a functional equation, meaning an equation between functionals: an equation between functionals can be read as an 'equation to solve', with solutions being themselves functions. In such equations there may be several sets of variable unknowns, like when it is said that an additive map is one satisfying Cauchy's functional equation:

Derivative and integration

Functional derivatives are used in Lagrangian mechanics. They are derivatives of functionals; that is, they carry information on how a functional changes when the input function changes by a small amount.

Richard Feynman used functional integrals as the central idea in his sum over the histories formulation of quantum mechanics. This usage implies an integral taken over some function space.

See also

  • Linear form – Linear map from a vector space to its field of scalars
  • Optimization (mathematics) – Study of mathematical algorithms for optimization problems
  • Tensor – Algebraic object with geometric applications

References

  1. ^ Lang 2002, p. 142 "Let E be a free module over a commutative ring A. We view A as a free module of rank 1 over itself. By the dual module E of E we shall mean the module Hom(E, A). Its elements will be called functionals. Thus a functional on E is an A-linear map f : EA."
  2. ^ Kolmogorov & Fomin 1957, p. 77 "A numerical function f(x) defined on a normed linear space R will be called a functional. A functional f(x) is said to be linear if fx + βy) = αf(x) + βf(y) where x, yR and α, β are arbitrary numbers."
  3. ^ a b Wilansky 2008, p. 7.
  4. ^ Axler (2014) p. 101, §3.92
  5. ^ Khelemskii, A.Ya. (2001) [1994], "Linear functional", Encyclopedia of Mathematics, EMS Press
  6. ^ Kolmogorov & Fomin 1957, pp. 62-63 "A real function on a space R is a mapping of R into the space R1 (the real line). Thus, for example, a mapping of Rn into R1 is an ordinary real-valued function of n variables. In the case where the space R itself consists of functions, the functions of the elements of R are usually called functionals."

Read other articles:

Cemetery in Berlin, Germany This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (April 2014) (Learn how and when to remove this template message) Friedhof der Russisch-Orthodoxen Gemeinde Berlin-TegelDetailsEstablished1892LocationBerlinCountryGermanyTypeChristian Orthodox cemetery The Berlin-Tegel Russian Orthodox Cemetery (Ge...

 

Raiffeisen Superliga 2007-08Datos generalesSede KosovoFecha 25 de agosto de 20071 de junio de 2008Edición IXOrganizador Federación de Fútbol de KosovoPalmarésPrimero PrishtinaSegundo VëllaznimiTercero BesaDatos estadísticosParticipantes 16 equiposPartidos 240Goles 715 (2.97 goles por partido) Intercambio de plazas Ascenso(s): IstoguFerizajUlpiana Descenso(s): Fushë Kosova Shqiponja KEK-uCronología Raiffeisen Superliga 2006-07 Raiffeisen Superliga 2007-08 Raiffeisen Superliga 2008-09 &...

 

88-tuts piano, termasuk 52 tuts putih dan 36 tuts hitam. Bandoneon adalah organ dengan tombol berbentuk silinder. IInstrumen keyboard (juga disebut: instrumen papan kunci) adalah jenis instrumen yang dimainkan dari keyboard instrumen. Keyboard adalah struktur datar, biasanya persegi panjang, di mana serangkaian tombol diketik atau ditekan oleh jari. Setiap kunci berbentuk persegi panjang (seperti pada piano) atau silinder dalam bentuk tombol (seperti pada bandoneon).[1][2][...

Mashiko 益子町Kota kecil BenderaLambangLokasi Mashiko di Prefektur TochigiNegara JepangWilayahKantōPrefektur TochigiDistrikHagaPemerintahan • Wali kotaTomoyuki ŌtsukaLuas • Total89,4 km2 (345 sq mi)Populasi (Oktober 1, 2015) • Total23.281 • Kepadatan260,4/km2 (6,740/sq mi)Zona waktuUTC+09:00 (JST)Kode pos321-4293Simbol  • PohonPinus densiflora • BungaLilium auratum •...

 

United States historic placeSaengerfest HalleU.S. National Register of Historic PlacesDavenport Register of Historic Properties No. 23 The Col Ballroom in 2012Show map of IowaShow map of the United StatesLocation1012 W. 4th St.Davenport, IowaCoordinates41°31′25″N 90°35′16″W / 41.52361°N 90.58778°W / 41.52361; -90.58778Arealess than one acreBuilt1914Built byOelrich & CompanyArchitectClausen & BurrowsMPSDavenport MRANRHP reference ...

 

Lieke Martens Nazionalità  Paesi Bassi Altezza 172 cm Calcio Ruolo Centrocampista, attaccante Squadra  Paris Saint-Germain Carriera Giovanili 1997–2005 RKVV Montagnards2005–2009 Olympia '182008–2009 HvA Squadre di club1 2009-2010 Heerenveen18 (2)2010-2011 VVV-Venlo20 (9)2011-2012 Standard Liegi? (17)2012-2013 2001 Duisburg30 (7)2014-2015 Kopparbergs/Göteborg36 (12)2016-2017 Rosengård26 (16)2017-2022 Barcellona110 (54)2022- Paris Sain...

Munisipalitas Jezersko Občina JezerskoMunisipalitasLokasi di SloveniaNegara SloveniaIbu kotaZgornje JezerskoLuas • Total68,8 km2 (266 sq mi)Populasi (2013) • Total634 • Kepadatan0,92/km2 (2,4/sq mi)Kode ISO 3166-2SI-163Situs webhttp://www.jezersko.si/ Munisipalitas Jezersko adalah salah satu dari 212 munisipalitas di Slovenia. Kode ISO 3166-2 munisipalitas yang beribu kota di Zgornje Jezersko ini adalah SI-163. Menurut sensus ...

 

CRACCalcio Leão, Leão do Sul Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Azzurro, bianco Dati societari Città Catalão Nazione  Brasile Confederazione CONMEBOL Federazione CBF Campionato Goiano Segunda Divisão Fondazione 1931 Presidente Roberto Silva Allenatore Wagner Lopes Stadio Genervino da Fonseca(12 000 posti) Palmarès Si invita a seguire il modello di voce Il Clube Recreativo e Atlético Catalano, meglio noto come CRAC, è una società calcistica bras...

 

Swedish chemist Theodor SvedbergSvedberg in 1926BornTheodor Svedberg(1884-08-30)30 August 1884Valbo, SwedenDied25 February 1971(1971-02-25) (aged 86)Kopparberg, SwedenAlma materUppsala UniversityKnown forAnalytical ultracentrifugationColloid chemistryAwardsNobel Prize for Chemistry (1926)[1]Franklin Medal (1949)Foreign Member of the Royal Society (1944)[2]Björkénska priset (1913, 1923, 1926)Scientific careerFieldsBiochemistryInstitutionsUppsala UniversityGusta...

Groundwater sapping is a geomorphic erosion process that results in the headward migration of channels in response to near constant fluid discharge at a fixed point. The consistent flow of water displaces fine sediments which physically and chemically weathers rocks.[1] Valleys that appear to have been created by groundwater sapping occur throughout the world in areas such as England, Colorado, Hawai’i, New Zealand, and many other places.[2] However, it is difficult to chara...

 

1964 film by Edward Dmytryk Where Love Has GoneOriginal film posterDirected byEdward DmytrykWritten byJohn Michael HayesBased onWhere Love Has Gone1962 novelby Harold RobbinsProduced byJoseph E. LevineStarringSusan HaywardBette DavisMike ConnorsJoey HeathertonJane Greer DeForest KelleyGeorge MacreadyCinematographyJoseph MacDonaldEdited byFrank BrachtMusic byWalter ScharfProductioncompanyEmbassy PicturesDistributed byParamount PicturesRelease date November 2, 1964 (1964-11-02)&#...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

Year in Ireland ← 1428 1427 1426 1425 1424 1429 in Ireland → 1430 1431 1432 1433 1434 Centuries: 13th 14th 15th 16th 17th Decades: 1400s 1410s 1420s 1430s 1440s See also:Other events of 1429List of years in Ireland Events from the year 1429 in Ireland. Incumbent Lord: Henry VI[1] Events Henry VI gives a £10 subsidy for building a small castle in 10 years. These later became the Irish Tower Houses. [2] By 1515, there would be more than 500 of these Tower Houses. ...

 

Mechanical transmission using multiple gears Transmission of motion and force by gear wheels, compound train.[1]Illustration by Georgius Agricola (1580) showing a toothed wheel that engages a slotted cylinder to form a gear train that transmits power from a human-powered treadmill to mining pump. A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage. Gear teeth are designed to ensure...

 

1964 film by Don Medford To Trap a SpyDirected byDon MedfordWritten bySam RolfeProduced byNorman FeltonStarringRobert VaughnCinematographyJoseph BirocEdited byHenry BermanMusic byJerry GoldsmithDistributed byMetro-Goldwyn-MayerRelease date January 19, 1966 (1966-01-19) (US) Running time92 minutesCountryUnited States To Trap a Spy is the feature-length film version of the 70-minute television pilot of The Man from U.N.C.L.E. starring Robert Vaughn. It also features Patricia ...

American multinational consumer electronics and computer corporation Current Apple Inc. logo, introduced in 1998, discontinued in 2000, and re-established in 2014[1] Apple Inc., originally Apple Computer, Inc., is a multinational corporation that creates and markets consumer electronics and attendant computer software, and is a digital distributor of media content. Apple's core product lines are the iPhone smartphone, iPad tablet computer, and the Macintosh personal computer. The comp...

 

<th colspan=2 nowrap datetime=1893-05-01 data-sort-value=1893-05-01>1er mai 189330 octobre 1893; color:#69cfff>Général World's Columbian Exposition Vue sur la Cour d'honneur et son Grand Bassin avec la statue de la République et l'Administration Building (mai 1893). Type-BIE Universelle Catégorie Expo historique Thème Le 400e anniversaire de l'arrivée de l'explorateur Christophe Colomb dans le Nouveau Monde Bâtiment {{{bâtiment}}} Surface 280 ha Inventions Grande ...

 

Mating system in which the female partner may have multiple partners This article is about polyandrous marriage practices. For polyandrous animal mating, see Polyandry in nature. Draupadi and her five brother husbands, the Pandavas. Top down, from left to right: the twins Nakula and Sahadeva stand either side of the throne on which Yudhishthira and Draupadi sit between Bhima and Arjuna. Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriag...

Questa voce sugli argomenti Aragona e stazioni e comprensori sciistici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. FormigaldistrettoFormigal – VedutaFormigal nel 2007 LocalizzazioneStato Spagna Comunità autonoma Aragona Provincia Huesca ComuneSallent de Gállego TerritorioCoordinate42°45′52.56″N 0°23′42.13″W42°45′52.56″N, 0°23′42.13″W (Formigal) Altitudine1 550 m s.l.m. Abitanti202 (2017) A...

 

日本 > 近畿地方 > 大阪府 > 大阪市 > 中央区 > 博労町 博労町 町丁 難波神社 博労町博労町の位置大阪市の地図を表示博労町博労町 (大阪府)大阪府の地図を表示 北緯34度40分42.51秒 東経135度29分56.31秒 / 北緯34.6784750度 東経135.4989750度 / 34.6784750; 135.4989750国 日本都道府県 大阪府市町村 大阪市区 中央区面積[1] • 合計...