Orthogonal complement

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in . Informally, it is called the perp, short for perpendicular complement. It is a subspace of .

Example

Let be the vector space equipped with the usual dot product (thus making it an inner product space), and let with then its orthogonal complement can also be defined as being

The fact that every column vector in is orthogonal to every column vector in can be checked by direct computation. The fact that the spans of these vectors are orthogonal then follows by bilinearity of the dot product. Finally, the fact that these spaces are orthogonal complements follows from the dimension relationships given below.

General bilinear forms

Let be a vector space over a field equipped with a bilinear form We define to be left-orthogonal to , and to be right-orthogonal to , when For a subset of define the left-orthogonal complement to be

There is a corresponding definition of the right-orthogonal complement. For a reflexive bilinear form, where , the left and right complements coincide. This will be the case if is a symmetric or an alternating form.

The definition extends to a bilinear form on a free module over a commutative ring, and to a sesquilinear form extended to include any free module over a commutative ring with conjugation.[1]

Properties

  • An orthogonal complement is a subspace of ;
  • If then ;
  • The radical of is a subspace of every orthogonal complement;
  • ;
  • If is non-degenerate and is finite-dimensional, then .
  • If are subspaces of a finite-dimensional space and then .

Inner product spaces

This section considers orthogonal complements in an inner product space .[2]

Two vectors and are called orthogonal if , which happens if and only if scalars .[3]

If is any subset of an inner product space then its orthogonal complement in is the vector subspace which is always a closed subset (hence, a closed vector subspace) of [3][proof 1] that satisfies:

  • ;
  • ;
  • ;
  • ;
  • .

If is a vector subspace of an inner product space then If is a closed vector subspace of a Hilbert space then[3] where is called the orthogonal decomposition of into and and it indicates that is a complemented subspace of with complement

Properties

The orthogonal complement is always closed in the metric topology. In finite-dimensional spaces, that is merely an instance of the fact that all subspaces of a vector space are closed. In infinite-dimensional Hilbert spaces, some subspaces are not closed, but all orthogonal complements are closed. If is a vector subspace of an inner product space the orthogonal complement of the orthogonal complement of is the closure of that is,

Some other useful properties that always hold are the following. Let be a Hilbert space and let and be linear subspaces. Then:

  • ;
  • if then ;
  • ;
  • ;
  • if is a closed linear subspace of then ;
  • if is a closed linear subspace of then the (inner) direct sum.

The orthogonal complement generalizes to the annihilator, and gives a Galois connection on subsets of the inner product space, with associated closure operator the topological closure of the span.

Finite dimensions

For a finite-dimensional inner product space of dimension , the orthogonal complement of a -dimensional subspace is an -dimensional subspace, and the double orthogonal complement is the original subspace:

If , where , , and refer to the row space, column space, and null space of (respectively), then[4]

Banach spaces

There is a natural analog of this notion in general Banach spaces. In this case one defines the orthogonal complement of to be a subspace of the dual of defined similarly as the annihilator

It is always a closed subspace of . There is also an analog of the double complement property. is now a subspace of (which is not identical to ). However, the reflexive spaces have a natural isomorphism between and . In this case we have

This is a rather straightforward consequence of the Hahn–Banach theorem.

Applications

In special relativity the orthogonal complement is used to determine the simultaneous hyperplane at a point of a world line. The bilinear form used in Minkowski space determines a pseudo-Euclidean space of events.[5] The origin and all events on the light cone are self-orthogonal. When a time event and a space event evaluate to zero under the bilinear form, then they are hyperbolic-orthogonal. This terminology stems from the use of conjugate hyperbolas in the pseudo-Euclidean plane: conjugate diameters of these hyperbolas are hyperbolic-orthogonal.

See also

Notes

  1. ^ If then which is closed in so assume Let where is the underlying scalar field of and define by which is continuous because this is true of each of its coordinates Then is closed in because is closed in and is continuous. If is linear in its first (respectively, its second) coordinate then is a linear map (resp. an antilinear map); either way, its kernel is a vector subspace of Q.E.D.

References

  1. ^ Adkins & Weintraub (1992) p.359
  2. ^ Adkins&Weintraub (1992) p.272
  3. ^ a b c Rudin 1991, pp. 306–312.
  4. ^ "Orthogonal Complement"
  5. ^ G. D. Birkhoff (1923) Relativity and Modern Physics, pages 62,63, Harvard University Press

Bibliography

  • Adkins, William A.; Weintraub, Steven H. (1992), Algebra: An Approach via Module Theory, Graduate Texts in Mathematics, vol. 136, Springer-Verlag, ISBN 3-540-97839-9, Zbl 0768.00003
  • Halmos, Paul R. (1974), Finite-dimensional vector spaces, Undergraduate Texts in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90093-3, Zbl 0288.15002
  • Milnor, J.; Husemoller, D. (1973), Symmetric Bilinear Forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 73, Springer-Verlag, ISBN 3-540-06009-X, Zbl 0292.10016
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.

Read other articles:

Demokrat Kristen adalah sebutan bagi para penganut paham demokrasi Kristen sebagai ideologi politik yang ide utamanya adalah mengkonsepsikan penyatuan antara konservatisme religius, khususnya Kristen Katholik Roma dengan demokrasi, dan liberalisme. Paham ini berkembang di Eropa Barat, khususnya di negara-negara daratan Eropa – tidak termasuk Inggris - seperti Jerman dan Prancis.[1][2][3][4][5] Latar Belakang Pada 1945, pasca Perang Dunia II, ideologi ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be written from a fan's point of view, rather than a neutral point of view. Please clean it up to conform to a higher standard of quality, and to make it neutral in tone. (April 2019) (Learn how and when to remove this template message) This biography of a living person needs additional citations for verification. Please hel...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2018). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pratique : Quelles sources sont attendues ? C...

1978 film directed by Lucio Fulci For the 1941 American western, see They Died with Their Boots On. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Silver Saddle – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this template message) Silver SaddleItalian theatrical ...

 

Serial animasi (Inggris: animated series) adalah sekumpulan karya animasi dengan judul serial yang umum, biasanya saling terkait satu sama lain. Setiap episode biasanya memiliki karakter utama yang sama, dan beberapa karakter sekunder dan tema dasar yang berbeda. Serial dapat memiliki jumlah episode yang terbatas seperti miniseri, akhir yang pasti, atau bersifat terbuka, tanpa jumlah episode yang telah ditentukan. Serial animasi bisa disiarkan di televisi, ditampilkan di bioskop, dirilis ...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

 

Asie de l'Ouest Localisation de l'Asie de l'Ouest. Pays 19 États reconnus Arabie saoudite Arménie Azerbaïdjan (partiellement) Bahreïn Chypre Égypte (Sinaï) Émirats arabes unis Géorgie (partiellement) Liban Irak Iran Israël Jordanie Koweït Oman Qatar Syrie Turquie (partiellement) Yémen 5 États non reconnus Abkhazie Ossétie du Sud-Alanie Chypre du Nord Palestine Kurdistan modifier  L'Asie de l'Ouest, parfois Asie occidentale, Asie du Sud-Ouest ou Asie sud-occidentale est ...

 

Tiếng Mân Tuyền Chươngtiếng Hà Lão福建話/閩南語(泉漳片/閩台片)Hō-ló-oē/Hô-ló-uēSử dụng tạiTrung Quốc, Đài Loan, Hồng Kông, Madagascar, Philippines, Campuchia, Malaysia, Indonesia, Singapore, Brunei, Thái Lan, Hoa Kỳ, và các nơi định cư của người Mân NamKhu vựcmiền Nam tỉnh Phúc Kiến và một số vùng duyên hải đông nam Trung Quốc đại lục, Đài Loan, Đông Nam ÁTổng số người nói?Dân tộcNgười Mân...

Un aliante Glasflügel 401 in volo. Volo a vela (in inglese gliding o soaring) indica il volo senza motore effettuato con un aliante, cioè con una macchina più pesante dell'aria (differente quindi dall'aerostato, che per alzarsi in volo sfrutta il principio di Archimede) sfruttando l'energia presente nell'atmosfera grazie all'abilità del pilota e alle caratteristiche della macchina. Questo sport nel 1936 fece parte dei giochi olimpici. Indice 1 Descrizione 2 La FAI 3 La licenza di pilota d...

 

Cet article est une ébauche concernant les monuments historiques français et l'Oise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Château d'Orrouy Début construction XVe siècle Propriétaire actuel Famille Grégoire Sainte-Marie[1] Protection  Inscrit MH (1989) Coordonnées 49° 17′ 34″ nord, 2° 51′ 33″ est Pays France Région historique Hauts-de-France D�...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

فندق عشتارالجغرافياالمنطقة الإدارية بغداد البلد  العراق الإحداثيات 33°18′50″N 44°25′08″E / 33.313813°N 44.418765°E / 33.313813; 44.418765 العمارةالصنف فندق الافتتاح الرسمي 1982 المميزاتالطوابق 16تعديل - تعديل مصدري - تعديل ويكي بيانات فندق عشتار غراند كريستال (شيراتون سابقا) في بغدا...

 

دوري إستونيا الممتاز 2013 تفاصيل الموسم دوري إستونيا الممتاز  النسخة 23  البلد إستونيا  التاريخ بداية:2 مارس 2013  نهاية:9 نوفمبر 2013  المنظم اتحاد إستونيا لكرة القدم  البطل ليفاديا تالين  مباريات ملعوبة 180   عدد المشاركين 10   دوري إستونيا الممتاز 2012  دوري ...

 

Human Y-chromosome DNA haplogroup This article is about the human Y-DNA haplogroup. For the human mtDNA haplogroup, see Haplogroup I (mtDNA). This article needs attention from an expert in Human Genetic History. The specific problem is: Nomenclature of haplogroup(s) and subclades. WikiProject Human Genetic History may be able to help recruit an expert. (January 2016) The article's lead section may need to be rewritten. Please help improve the lead and read the lead layout guide. (January 2023...

Albanian footballer (born 2000) Marash KumbullaPersonal informationFull name Marash Nikolin KumbullaDate of birth (2000-02-08) 8 February 2000 (age 24)Place of birth Peschiera del Garda, ItalyHeight 1.91 m (6 ft 3 in)[1]Position(s) Centre-backTeam informationCurrent team Sassuolo(on loan from Roma)Number 19Youth career2008–2018 Hellas VeronaSenior career*Years Team Apps (Gls)2018–2021 Hellas Verona 28 (1)2020–2021 → Roma (loan) 21 (1)2021– Roma 24 (0)2024...

 

Bagian dari serial mengenaiRekayasa genetika   Organisme termodifikasi secara genetika Bakteri • Virus Hewan (Mamalia • Ikan • Serangga) Tanaman (Jagung • Padi • Kedelai) Sejarah dan regulasi Sejarah Regulasi (Kesetaraan substansial • Protokol Cartagena mengenai keselamatan biologis) Proses Teknik Pengklonan molekular (DNA rekombinan) Penyaluran gen (Transformasi • Transfeksi • Transduksi) Penyuntingan genom (TALEN • CRISPR) Aplikasi Tanaman pangan termodifikasi secara ...

 

Questa voce è orfana, ovvero priva di collegamenti in entrata da altre voci. Inseriscine almeno uno pertinente e utile e rimuovi l'avviso. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sull'argomento musicisti non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Roberto Esposito Nazionalità 🇮🇹 Italia Genere Classica Contemporanea Jazz Pop Periodo ...

Bresciacollegio elettoraleStato Italia Elezioni perSenato della Repubblica ElettiSenatori Periodo 1948-1993Tipologiauninominale/plurinominale Periodo 1993-2005Tipologiauninominale Territorio Manuale Il collegio di Brescia fu un collegio elettorale uninominale della Repubblica Italiana appartenente alla Circoscrizione Lombardia; fu utilizzato per eleggere un senatore della Repubblica dalla I alla XIV legislatura, sebbene con forme diverse e sistemi elettorali diversi. Indice 1 Storia 2 19...

 

このフィクションに関する記事は、ほとんどがあらすじ・登場人物のエピソードといった物語内容の紹介だけで成り立っています。 製作過程や社会的影響、専門家による批評や分析など、作品外部の情報の加筆を行い、現実世界の観点を説明してください。(2018年7月) (使い方) ツヨシしっかりしなさい ジャンル コメディ 漫画 作者 永松潔 出版社 講談社 掲載誌 モー...