A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and some contemporary developments are closely related to Mikio Sato's algebraic analysis.
The intensive use of the Laplace transform in engineering led to the heuristic use of symbolic methods, called operational calculus. Since justifications were given that used divergent series, these methods were questionable from the point of view of pure mathematics. They are typical of later application of generalized function methods. An influential book on operational calculus was Oliver Heaviside's Electromagnetic Theory of 1899.
When the Lebesgue integral was introduced, there was for the first time a notion of generalized function central to mathematics. An integrable function, in Lebesgue's theory, is equivalent to any other which is the same almost everywhere. That means its value at each point is (in a sense) not its most important feature. In functional analysis a clear formulation is given of the essential feature of an integrable function, namely the way it defines a linear functional on other functions. This allows a definition of weak derivative.
This theory was very successful and is still widely used, but suffers from the main drawback that distributions cannot usually be multiplied: unlike most classical function spaces, they do not form an algebra. For example, it is meaningless to square the Dirac delta function. Work of Schwartz from around 1954 showed this to be an intrinsic difficulty.
Algebras of generalized functions
Some solutions to the multiplication problem have been proposed. One is based on a simple definition of by Yu. V. Egorov[4] (see also his article in Demidov's book in the book list below) that allows arbitrary operations on, and between, generalized functions.
Another solution allowing multiplication is suggested by the path integral formulation of quantum mechanics.
Since this is required to be equivalent to the Schrödinger theory of quantum mechanics which is invariant under coordinate transformations, this property must be shared by path integrals. This fixes all products of generalized functions
as shown by H. Kleinert and A. Chervyakov.[5] The result is equivalent to what can be derived from
dimensional regularization.[6]
Several constructions of algebras of generalized functions have been proposed, among others those by Yu. M. Shirokov
[7] and those by E. Rosinger, Y. Egorov, and R. Robinson.[citation needed]
In the first case, the multiplication is determined with some regularization of generalized function. In the second case, the algebra is constructed as multiplication of distributions. Both cases are discussed below.
Non-commutative algebra of generalized functions
The algebra of generalized functions can be built-up with an appropriate procedure of projection of a function to its smooth
and its singular parts. The product of generalized functions and appears as
(1)
Such a rule applies to both the space of main functions and the space of operators which act on the space of the main functions.
The associativity of multiplication is achieved; and the function signum is defined in such a way, that its square is unity everywhere (including the origin of coordinates). Note that the product of singular parts does not appear in the right-hand side of (1); in particular, . Such a formalism includes the conventional theory of generalized functions (without their product) as a special case. However, the resulting algebra is non-commutative: generalized functions signum and delta anticommute.[7] Few applications of the algebra were suggested.[8][9]
Multiplication of distributions
The problem of multiplication of distributions, a limitation of the Schwartz distribution theory, becomes serious for non-linear problems.
Various approaches are used today. The simplest one is based on the definition of generalized function given by Yu. V. Egorov.[4] Another approach to construct associativedifferential algebras is based on J.-F. Colombeau's construction: see Colombeau algebra. These are factor spaces
of "moderate" modulo "negligible" nets of functions, where "moderateness" and "negligibility" refers to growth with respect to the index of the family.
Example: Colombeau algebra
A simple example is obtained by using the polynomial scale on N,
. Then for any semi normed algebra (E,P), the factor space will be
In particular, for (E, P)=(C,|.|) one gets (Colombeau's) generalized complex numbers (which can be "infinitely large" and "infinitesimally small" and still allow for rigorous arithmetics, very similar to nonstandard numbers). For (E, P) = (C∞(R),{pk}) (where pk is the supremum of all derivatives of order less than or equal to k on the ball of radius k) one gets Colombeau's simplified algebra.
Injection of Schwartz distributions
This algebra "contains" all distributions T of D' via the injection
This injection is non-canonical in the sense that it depends on the choice of the mollifier φ, which should be C∞, of integral one and have all its derivatives at 0 vanishing. To obtain a canonical injection, the indexing set can be modified to be N × D(R), with a convenient filter base on D(R) (functions of vanishing moments up to order q).
Sheaf structure
If (E,P) is a (pre-)sheaf of semi normed algebras on some topological space X, then Gs(E, P) will also have this property. This means that the notion of restriction will be defined, which allows to define the support of a generalized function w.r.t. a subsheaf, in particular:
For the subsheaf {0}, one gets the usual support (complement of the largest open subset where the function is zero).
For the subsheaf E (embedded using the canonical (constant) injection), one gets what is called the singular support, i.e., roughly speaking, the closure of the set where the generalized function is not a smooth function (for E = C∞).
Microlocal analysis
The Fourier transformation being (well-)defined for compactly supported generalized functions (component-wise), one can apply the same construction as for distributions, and define Lars Hörmander's wave front set also for generalized functions.
A further way in which the theory has been extended is as generalized sections of a smooth vector bundle. This is on the Schwartz pattern, constructing objects dual to the test objects, smooth sections of a bundle that have compact support. The most developed theory is that of De Rham currents, dual to differential forms. These are homological in nature, in the way that differential forms give rise to De Rham cohomology. They can be used to formulate a very general Stokes' theorem.
Oberguggenberger, M. (1992). Multiplication of distributions and applications to partial differential equations. Longman. ISBN978-0-582-08733-0. OCLC682138968.
^Halperin, I., & Schwartz, L. (1952). Introduction to the Theory of Distributions. Toronto: University of Toronto Press. (Short lecture by Halperin on Schwartz's theory)