In mathematics, the Hilbert projection theorem is a famous result of convex analysis that says that for every vector in a Hilbert space and every nonempty closed convex there exists a unique vector for which is minimized over the vectors ; that is, such that for every
Finite dimensional case
Some intuition for the theorem can be obtained by considering the first order condition of the optimization problem.
Consider a finite dimensional real Hilbert space with a subspace and a point If is a minimizer or minimum point of the function defined by (which is the same as the minimum point of ), then derivative must be zero at
In matrix derivative notation[1]
Since is a vector in that represents an arbitrary tangent direction, it follows that must be orthogonal to every vector in
Statement
Hilbert projection theorem — For every vector in a Hilbert space and every nonempty closed convex there exists a unique vector for which is equal to
If the closed subset is also a vector subspace of then this minimizer is the unique element in such that is orthogonal to
Detailed elementary proof
Proof that a minimum point exists
Let be the distance between and a sequence in such that the distance squared between and is less than or equal to Let and be two integers, then the following equalities are true:
and
Therefore
(This equation is the same as the formula for the length of a median in a triangle with sides of length and where specifically, the triangle's vertices are ).
By giving an upper bound to the first two terms of the equality and by noticing that the middle of and belong to and has therefore a distance greater than or equal to from it follows that:
The last inequality proves that is a Cauchy sequence. Since is complete, the sequence is therefore convergent to a point whose distance from is minimal.
Proof of characterization of minimum point when is a closed vector subspace
Assume that is a closed vector subspace of It must be shown the minimizer is the unique element in such that for every
Proof that the condition is sufficient:
Let be such that for all
If then and so
which implies that
Because was arbitrary, this proves that and so is a minimum point.
Proof that the condition is necessary:
Let be the minimum point. Let and
Because the minimality of guarantees that Thus
is always non-negative and must be a real number.
If then the map has a minimum at and moreover, which is a contradiction.
Thus
Proof by reduction to a special case
It suffices to prove the theorem in the case of because the general case follows from the statement below by replacing with
Hilbert projection theorem (case )[2] — For every nonempty closed convex subset of a Hilbert space there exists a unique vector such that
Furthermore, letting if is any sequence in such that in [note 1] then in
Proof
Let be as described in this theorem and let
This theorem will follow from the following lemmas.
Lemma 1 — If is any sequence in such that in then there exists some such that in Furthermore,
Proof of Lemma 1
Because is convex, if then so that by definition of the infimum, which implies that
By the parallelogram law,
where now implies
and so
The assumption implies that the right hand side (RHS) of the above inequality can be made arbitrary close to by making and sufficiently large.[note 2] The same must consequently also be true of the inequality's left hand side and thus also of which proves that is a Cauchy sequence in
Since is complete, there exists some such that in
Because every belongs to which is a closed subset of their limit must also belongs to this closed subset, which proves that
Since the norm is a continuous function, in implies that in But also holds (by assumption) so that (because limits in are unique).
Lemma 2 — A sequence satisfying the hypotheses of Lemma 1 exists.
Proof of Lemma 2
The existence of the sequence follows from the definition of the infimum, as is now shown.
The set is a non-empty subset of non-negative real numbers and
Let be an integer.
Because there exists some such that
Since holds (by definition of the infimum). Thus and now the squeeze theorem implies that in (This first part of the proof works for any non-empty subset of for which is finite).
For every the fact that means that there exists some such that
The convergence in thus becomes in
Lemma 2 and Lemma 1 together prove that there exists some such that
Lemma 1 can be used to prove uniqueness as follows.
Suppose is such that and denote the sequence by so that the subsequence of even indices is the constant sequence while the subsequence of odd indices is the constant sequence
Because for every in which shows that the sequence satisfies the hypotheses of Lemma 1.
Lemma 1 guarantees the existence of some such that in
Because converges to so do all of its subsequences.
In particular, the subsequence converges to which implies that (because limits in are unique and this constant subsequence also converges to ). Similarly, because the subsequence converges to both and Thus which proves the theorem.
Consequences
Proposition — If is a closed vector subspace of a Hilbert space then[note 3]
Let where is the underlying scalar field of and define
which is continuous and linear because this is true of each of its coordinates
The set is closed in because is closed in and is continuous.
The kernel of any linear map is a vector subspace of its domain, which is why is a vector subspace of
Proof that :
Let
The Hilbert projection theorem guarantees the existence of a unique such that (or equivalently, for all ).
Let so that and it remains to show that
The inequality above can be rewritten as:
Because and is a vector space, and which implies that
The previous inequality thus becomes
or equivalently,
But this last statement is true if and only if every Thus
Properties
Expression as a global minimum
The statement and conclusion of the Hilbert projection theorem can be expressed in terms of global minimums of the followings functions. Their notation will also be used to simplify certain statements.
Given a non-empty subset and some define a function
A global minimum point of if one exists, is any point in such that
in which case is equal to the global minimum value of the function which is:
Effects of translations and scalings
When this global minimum point exists and is unique then denote it by explicitly, the defining properties of (if it exists) are:
The Hilbert projection theorem guarantees that this unique minimum point exists whenever is a non-empty closed and convex subset of a Hilbert space.
However, such a minimum point can also exist in non-convex or non-closed subsets as well; for instance, just as long is is non-empty, if then
If is a non-empty subset, is any scalar, and are any vectors then
which implies:
Examples
The following counter-example demonstrates a continuous linear isomorphism for which
Endow with the dot product, let and for every real let be the line of slope through the origin, where it is readily verified that
Pick a real number and define by (so this map scales the coordinate by while leaving the coordinate unchanged).
Then is an invertible continuous linear operator that satisfies and
so that and
Consequently, if with and if then
^Because the norm is continuous, if converges in then necessarily converges in But in general, the converse is not guaranteed. However, under this theorem's hypotheses, knowing that in is sufficient to conclude that converges in
^Explicitly, this means that given any there exists some integer such that "the quantity" is whenever Here, "the quantity" refers to the inequality's right hand side and later in the proof, "the quantity" will also refer to and then By definition of "Cauchy sequence," is Cauchy in if and only if "the quantity" satisfies this aforementioned condition.
Adolf Wagner Adolf Wagner (1 Oktober 1890 – 12 April 1944) adalah seorang pejabat dan politikus Partai Nazi yang pernah menjabat sebagai Gauleiter München–Oberbayern serta Menteri Dalam Negeri Bayern pada masa Jerman Nazi. Ia pernah menjabat sebagai Menteri Pendidikan Bayern, dan pada 23 April 1941, ia memerintahkan agar doa di sekolah diganti dengan lagu-lagu Nazi. Ia juga melarang salib dan gambar-gambar keagamaan di ruang kelas. Kebijakan ini membuat murka Gereja Katolik Roma dan oran...
French illustrator and designer Paul IribeBornJoseph Paul Iribe(1883-06-08)8 June 1883Angoulême, FranceDied21 September 1935(1935-09-21) (aged 52)Roquebrune-Cap-Martin, FranceNationalityFrenchKnown forillustration, decorative arts Paul Iribe (8 June 1883 – 21 September 1935) was a French illustrator and designer in the decorative arts. He worked in Hollywood during the 1920s and was Coco Chanel's lover from 1931 to his death. Early life and career Joseph Paul Iribe was born in An...
American Catholic prelate (born 1957) His Excellency, The Most ReverendRichard Frank StikaBishop Emeritus of KnoxvilleChurchCatholic ChurchArchdioceseLouisvilleDioceseKnoxvilleAppointedJanuary 12, 2009InstalledMarch 19, 2009RetiredJune 27, 2023PredecessorJoseph Edward KurtzOrdersOrdinationDecember 14, 1985by John L. MayConsecrationMarch 19, 2009by Justin Francis RigaliJoseph Edward KurtzRobert Joseph ShaheenPersonal detailsBorn (1957-07-04) July 4, 1957 (age 66)St. Louis, Misso...
Sverre Petterssen En uniforme norvégien Données clés Naissance 19 février 1898Hadsel (Norvège) Décès 31 décembre 1974 (à 76 ans)Londres (Royaume-Uni) Nationalité Norvège puis États-Unis Données clés Domaines Météorologie Institutions École de météorologie de Bergen, prévisionniste durant Seconde Guerre mondiale Diplôme Université d'Oslo Étudiants en thèse James Murdoch Austin Renommé pour Prévision météorologique du Jour J Distinctions Entre autres la Médail...
1991–92 Balkan political conflict This article is about the events entailing the 1991 and 1992 dissolution of the Yugoslav state. For key dates of the dissolution, see Timeline of the breakup of Yugoslavia. For the partition of Yugoslavia by Axis occupiers in World War II, see Invasion of Yugoslavia. Breakup of YugoslaviaPart of the Cold War, the Revolutions of 1989 and the Yugoslav Wars Animated series of maps showing the breakup of the SFR Yugoslavia and subsequent developments, from 1989...
Aníbal Paz Nazionalità Uruguay Calcio Ruolo Portiere Termine carriera 1953 Carriera Giovanili 1932-1937 Liverpool (M) Squadre di club1 1937 Bella Vista? (-?)1938-1953 Nacional471 (-?) Nazionale 1940-1950 Uruguay22 (-31)[1] Carriera da allenatore 1969 NacionalPortieri Palmarès Mondiali di calcio Oro Brasile 1950 Campeonato Sudamericano de Football Argento Perù 1939 Argento Cile 1941 Oro Uruguay 1942 1 I due numeri indicano le presenze e l...
Dalam artikel ini, pertama atau paternal nama keluarganya adalah Fonseca dan nama keluarga maternal atau keduanya adalah Castellanos. Adriana FonsecaFonseca pada Alma Awards 2014LahirAdriana Fonseca Castellanos16 Maret 1979 (umur 45)[1]Veracruz, Meksiko[1]PekerjaanAPemeranpenariSuami/istriIker CalderonOrang tuaHugo FonsecaGuillermina Castellanos[2]KerabatJacqueline dan Hugo (saudara)[2]Situs webOfficial Site Adriana Fonseca (pengucapan bahasa Spany...
Clemson-class destroyer For other ships with the same name, see USS McCook and HMCS St. Croix. USS McCook History United States NameUSS McCook NamesakeRoderick S. McCook BuilderBethlehem Shipbuilding Corporation, Fore River Shipyard, Quincy Laid down10 September 1918 Launched31 January 1919 Commissioned30 April 1919 Decommissioned24 September 1940 Stricken8 January 1941 IdentificationDD-252 FateTransferred to the United Kingdom then Canada, 24 September 1940 Canada NameHMCS St. Croix Namesake...
No debe confundirse con la Unión Europea o el Espacio Económico Europeo. Mapa del espacio Schengen Países del espacio Schengen Países que tienen las fronteras abiertas con la UE Estados miembros de la UE obligados a unirse al espacio Schengen El espacio Schengen o espacio de Schengen[1] (pronunciado [ˈʃɛŋən]) es el área de libre circulación que comprende a 29 países europeos que h...
Taslim Azis Anggota Dewan Perwakilan RakyatMasa jabatan13 Februari 2019 – 1 Oktober 2019PendahuluAmrullah Amri TuasikalPenggantiPetahanaGrup parlemenGerindraDaerah pemilihanMaluku Informasi pribadiLahir(1964-06-23)23 Juni 1964Ambon, Maluku, IndonesiaMeninggal28 Februari 2021(2021-02-28) (umur 56)Jakarta, IndonesiaPartai politikPartai GerindraAlma materUniversitas Islam BandungKarier olahragaNegaraIndonesiaOlahragaPencak silatKelas F70–75 kgPensiun1997 Rekam medali Pencak sil...
Novia BachmidNovia pada tahun 2020LahirNovia Noval Bachmid19 Januari 2002 (umur 22)Bolaang Mongondow Timur, Sulawesi Utara, IndonesiaKebangsaanIndonesiaPekerjaanPenyanyiaktrisTahun aktif2013—sekarangKarier musikGenrePopInstrumenVokalLabelHits Novia Noval Bachmid (lahir 19 Januari 2002) adalah penyanyi dan aktris Indonesia. Novia merupakan delapan besar dari Indonesian Idol musim kesepuluh yang ditayangkan di RCTI pada 2019—2020.[1] Novia mendapat pengakuan luas melalui ...
US Navy facility in California Naval Base San DiegoSan Diego, California in the United StatesNB San DiegoShow map of CaliforniaNB San DiegoShow map of the United StatesCoordinates32°41′05″N 117°07′48″W / 32.68476190°N 117.12996370°W / 32.68476190; -117.12996370TypeNaval baseArea1,926 acres (779 ha; 3.009 sq mi)Site informationOwnerDepartment of DefenseOperatorUS NavyControlled byNavy Region SouthwestConditionOperationalWebsiteOffici...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Martín Fierro film – news · newspapers · books · scholar · JSTOR (October 2019) (Learn how and when to remove this message) 1968 Argentine filmMartín FierroTheatrical release posterDirected byLeopoldo Torre NilssonScreenplay byBeatriz GuidoLuis Pico EstradaEdmundo Eichelb...
У этого термина существуют и другие значения, см. Рен (значения). Запрос «Ренн» перенаправляется сюда; см. также другие значения. коммунаРен (Ренн)фр. Rennes [[File:|Эспланада имени Шарля де Голля|92px]] Герб[вд] Логотип[вд] 48°07′ с. ш. 1°41′ з. д.HGЯO Страна Франция Реги...
Kuwana-shi 桑名市 Kuwana et la baie d'Ise. Drapeau Administration Pays Japon Région Kansai Préfecture Mie Maire Narutaka Itō Code postal 〒511-8601 Démographie Population 141 458 hab. (septembre 2020) Densité 1 035 hab./km2 Géographie Coordonnées 35° 04′ 00″ nord, 136° 40′ 00″ est Superficie 13 668 ha = 136,68 km2 Localisation Géolocalisation sur la carte : Japon Kuwana-shi Géolocalisation ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2019) نادي تيماء السعودي الاسم المختصر تيماء الألوان الأبيض و الأخضر تأسس عام 1404 هـ الملعب تيماء السعودية الب...
Стокгольмський міжнародний кінофестивальЕмблема фестивалю в криги (2009 рік)Місце проведення Швеція, СтокгольмРоки проведенняз 1990 рокуДати проведенняу другій половині листопадаМовашведська мова, англійська мова(швед.)(англ.) Стокгольмський міжнародний кінофести�...
Îles BritanniquesBritish Isles (en) Vue satellite des îles Britanniques Géographie Pays Royaume-Uni Irlande Localisation Océan Atlantique Coordonnées 55° N, 5° O Superficie 315 134 km2 Nombre d'îles Plus de 6 000 Île(s) principale(s) Grande-Bretagne, Irlande Point culminant Ben Nevis (1 345 m sur Grande-Bretagne) Géologie Îles continentales et volcaniques, bancs de sable Administration Statut Archipel partagé entre deux pays (Irlan...
Political ideology advocating traditional morals and social order Not to be confused with Traditionalist School. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (May 2024) (Learn how and when to re...