Functional calculus

In mathematics, a functional calculus is a theory allowing one to apply mathematical functions to mathematical operators. It is now a branch (more accurately, several related areas) of the field of functional analysis, connected with spectral theory. (Historically, the term was also used synonymously with calculus of variations; this usage is obsolete, except for functional derivative. Sometimes it is used in relation to types of functional equations, or in logic for systems of predicate calculus.)

If is a function, say a numerical function of a real number, and is an operator, there is no particular reason why the expression should make sense. If it does, then we are no longer using on its original function domain. In the tradition of operational calculus, algebraic expressions in operators are handled irrespective of their meaning. This passes nearly unnoticed if we talk about 'squaring a matrix', though, which is the case of and an matrix. The idea of a functional calculus is to create a principled approach to this kind of overloading of the notation.

The most immediate case is to apply polynomial functions to a square matrix, extending what has just been discussed. In the finite-dimensional case, the polynomial functional calculus yields quite a bit of information about the operator. For example, consider the family of polynomials which annihilates an operator . This family is an ideal in the ring of polynomials. Furthermore, it is a nontrivial ideal: let be the finite dimension of the algebra of matrices, then is linearly dependent. So for some scalars , not all equal to 0. This implies that the polynomial lies in the ideal. Since the ring of polynomials is a principal ideal domain, this ideal is generated by some polynomial . Multiplying by a unit if necessary, we can choose to be monic. When this is done, the polynomial is precisely the minimal polynomial of . This polynomial gives deep information about . For instance, a scalar is an eigenvalue of if and only if is a root of . Also, sometimes can be used to calculate the exponential of efficiently.

The polynomial calculus is not as informative in the infinite-dimensional case. Consider the unilateral shift with the polynomials calculus; the ideal defined above is now trivial. Thus one is interested in functional calculi more general than polynomials. The subject is closely linked to spectral theory, since for a diagonal matrix or multiplication operator, it is rather clear what the definitions should be.

See also

References

  • "Functional calculus", Encyclopedia of Mathematics, EMS Press, 2001 [1994]

Read other articles:

Japanese musician and poet You can help expand this article with text translated from the corresponding article in Japanese. (May 2021) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated t...

 

Lambang Peta Data dasar Bundesland: Niedersachsen Ibu kota: Helmstedt Wilayah: 673,76 km² Penduduk: 97.884 (30 September 2005) Kepadatan penduduk: 145 penduduk per km² Pelat nomor kendaraan bermotor: HE Pembagian administratif: 26 Gemeinden Alamat kantor bupati: Südertor 638350 Helmstedt Situs web resmi: www.helmstedt.de Politik Bupati: Gerhard Kilian (CDU) Peta Helmstedt adalah sebuah distrik (Landkreis) di Niedersachsen, Jerman. lbsNiedersachsenLandkreise (Distrik)Ammerland • Aurich �...

 

Kabupaten BoneKabupatenDari kiri ke kanan, atas ke bawah: Pelabuhan Bajoe Kabupaten Bone sebagai penghubung jalur laut utama Sulawesi Selatan–Sulawesi Tenggara, Stadion La Patau di Kota Watampone, Pantai Pasir Putih Tete dan terlihat kejauhan Pulau Bulubetta, Koral di perairan Mallusetasi Kabupaten Bone LambangJulukan: Bumi Arung Palakka[1]Motto: Sumange Tealara(Teguh Dalam Keyakinan, Kukuh Dalam Kebersamaan)PetaKabupaten BonePetaTampilkan peta SulawesiKabupaten BoneKabupa...

Cikrak emu mahkota merah Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Aves Superordo: Stromateoidei Ordo: Passeriformes Famili: Maluridae Genus: Stipiturus Spesies: Stipiturus malachurusShaw, 1798 Peta persebaran Sinonim Muscicapa malachura Shaw Malurus palustris Veillot Cikrak-emu selatan (Stipiturus malachurus) adalah spesies burung dalam keluarga Cikrak peri (Maluridae). Burung ini merupakan burun...

 

Kepulauan Solomon padaOlimpiade Musim Panas 2020Kode IOCSOLKONKomite Olimpiade Nasional Kepulauan SolomonSitus webwww.oceaniasport.com/solomonPenampilan pada Olimpiade Musim Panas 2020 di TokyoPeserta3 dalam 3 cabang olahragaPembawa bendera (pembukaan)Sharon FirisuaEdgar IroPembawa bendera (penutupan)Mary Kini LifuMedali 0 0 0 Total 0 Penampilan pada Olimpiade Musim Panas (ringkasan)1984198819921996200020042008201220162020 Kepulauan Solomon berkompetisi di Olimpiade Musim Panas 2020...

 

Hotel in Georgia, United States This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Four Seasons Hotel Atlanta – news · newspapers · books · scholar · JSTOR (August 2009) (Learn how and when to remove this template message) Four Seasons Hotel AtlantaFour Seasons Hotel AtlantaGeneral informationLocation75 14th St NE, Atlanta, GA 30309Coordinates33°47′10�...

Kosmos 2430Mission typeEarly warningCOSPAR ID2007-049A SATCAT no.32268Mission duration4 years[1] Spacecraft propertiesSpacecraft typeUS-K[2]Launch mass1,900 kilograms (4,200 lb)[3] Start of missionLaunch date23 October 2007, 04:39 (2007-10-23UTC04:39Z) UTCRocketMolniya-M/2BL[2]Launch sitePlesetsk Cosmodrome[2][3] End of missionDeactivatedMay 2012?[4]Decay date5 January 2019, 07:58:00 (2019-01-05UTC07:59) UTC[...

 

Honda Masazumi est un nom japonais traditionnel ; le nom de famille (ou le nom d'école), Honda, précède donc le prénom (ou le nom d'artiste). Honda MasazumiFonctionDaimyoTitre de noblesseDaimyoBiographieNaissance 1565Décès 5 avril 1637Nom dans la langue maternelle 本多正純Activité SamouraïPère Honda MasanobuConjoints 酒井重忠の娘 (本多正純の正室) (d)Rengein (d)Enfant Honda Masakatsu (d)Vue de la sépulture.modifier - modifier le code - modifier Wikidata Honda M...

 

Duta Besar Duta besar Amerika Serikat untuk AfganistanSegel Kementerian Dalam Negeri Amerika SerikatPetahanaJohn R. Basssejak 12 Desember 2017Dicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat SenatPejabat perdanaWilliam H. Hornibrooksebagai Duta Luar Biasa dan Menteri Berkuasa PenuhDibentuk4 Mei 1935Situs webaf.usembassy.gov Kedubes AS di Kabul, 2010 Duta Besar Amerika Serikat untuk Afganistan adalah perwakilan resmi Presiden Amerika Serikat untuk kepala negara A...

Southeastern frontier march of the Holy Roman Empire, c. 970–1156 Margraviate of AustriaEastern MarchOstarrîchi (Old High German)c. 970–1156 Ancient arms of theHouse of Babenberg,Margraves of Austria Map of the Margraviate of Austria within the Duchy of Bavaria circa 1000 CE.  Austria  Other parts of Bavaria  Rest of the German KingdomStatusMargraviate, within the Duchy of Bavaria and the Holy Roman EmpireCapitalMelkCommon languagesAustr...

 

Kimobetsu 喜茂別町KotaprajaBalai Kota Kimobetsu BenderaEmblemLokasi Kimobetsu di Hokkaido (Subprefektur Shiribeshi)KimobetsuLokasi di JepangKoordinat: 42°48′N 140°56′E / 42.800°N 140.933°E / 42.800; 140.933Koordinat: 42°48′N 140°56′E / 42.800°N 140.933°E / 42.800; 140.933NegaraJepangWilayahHokkaidoPrefektur Hokkaido (Subprefektur Shiribeshi)DistrikAbutaPemerintahan • WalikotaShunji UchimuraLuas • ...

 

Railroad in Massachusetts See also: History of rail in Dedham, Massachusetts Dedham BranchFormer site of East Dedham station, photographed in 2015OverviewStatusAbandonedOwnerNew York, New Haven and Hartford Railroad later Massachusetts Bay Transportation AuthorityLocaleSoutheastern MassachusettsTerminiBoston South StationDedhamStations7ServiceTypeCommuter railSystemMassachusetts Bay Transportation AuthorityOperator(s)New York, New Haven and Hartford Railroad 1893-1964 Massachusetts Bay Transp...

Gaspara Stampa BiografiKelahiran1523 Padova Kematian23 April 1554 (30/31 tahun)Venesia KegiatanSpesialisasiPuisi Pekerjaanpenyair, lutenist, komponis Murid dariTugdual Menon Dipengaruhi olehPetrarca Gaspara Stampa (1523 – 23 April 1554) merupakan seorang penyair asal Italia. Ia dianggap sebagai salah seorang penyair wanita terhebat dari era Renaisans Italia, dan ia dianggap oleh khalayak banyak sebagai seorang penyair wanita Italia terbesar dari segala usia.[1] Referensi Gas...

 

Dieser Artikel beschreibt den NS-Politiker Robert Ley. Für weitere Bedeutungen siehe Robert Ley (Begriffsklärung). Robert Ley im Jahr 1933 Robert Ley (* 15. Februar 1890 in Niederbreidenbach, Rheinprovinz; † 25. Oktober 1945 in Nürnberg) war im Rahmen seiner Positionen als Reichsleiter der NSDAP sowie Leiter des Einheitsverbands Deutsche Arbeitsfront einer der führenden Politiker zur Zeit des Nationalsozialismus. Er gehörte zu den 24 im Nürnberger Prozess gegen die Hauptkriegsverbrec...

 

Greg EviganGreg Evigan at the premiere of Step Up 2: The StreetsLahirGregory Ralph Evigan14 Oktober 1953 (umur 70)South Amboy, New Jersey, U.S.PekerjaanActor, composer, producerTahun aktif1976–presentSuami/istriPamela C. Serpe (1979-present; 3 children)Situs webhttp://www.evigan.com/ Gregory Ralph Greg Evigan (lahir 14 Oktober 1961) adalah pemeran berkebangsaan Amerika Serikat. Namanya dikenal melalui sejumlah drama seri di televisi antara lain B. J. and the Bear, My Two Dads, P....

County in New York, United States Not to be confused with Nassau (town), New York or Nassau (village), New York. County in New YorkNassau CountyCountyCounty of NassauHempstead House, part of Sands Point Preserve, on Nassau County's Gold Coast, home to some of the world's most expensive real estate FlagSealLocation within the U.S. state of New YorkNew York's location within the U.S.Coordinates: 40°44′50″N 73°38′17″W / 40.7472°N 73.6381°W / 40.7472; -73.6381C...

 

Miracle performed by Jesus This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Exorcising the blind and mute man – news · newspapers · books · scholar · JSTOR (February 2014) (Learn how and when to remove this message) Exorcising the blind and mute man by James Tissot, late 19th century Exorcising the blind and mute man is one of the miracles of Jesus in th...

 

Questa voce sull'argomento calciatori iracheni è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Laith HusseinNazionalità Iraq Calcio RuoloCentrocampista CarrieraSquadre di club1 1983-1986 Al-Zawraa? (?)1986-1990 Al-Rasheed? (?)1990-1993 Al-Zawraa? (?)1993-1997 Al-Rayyan? (?)1997-2000 Ansar? (?)2000-2003 Al-Zawraa? (?) Nazionale 1986-2002 Iraq80 (21) 1 I due numeri ind...

Athletics at the2000 Summer OlympicsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField eventsLong jumpmenwomenTriple jumpmenwomenHigh jumpmenwomenPole vaultmenwomenShot putmenwomenDiscus throwmenwomenJavelin throwmenwomenHammer throwmenwomenCombined e...

 

Former public university in Quebec, Canada Sir George Williams UniversityFormer namesSir George Williams CollegeTypePublicActive1926–1974LocationMontreal, Quebec, Canada45°29′49″N 73°34′44″W / 45.497°N 73.579°W / 45.497; -73.579NicknameGeorgiansAffiliationsYMCA Sir George Williams University was a university in Montreal, Quebec, Canada. It merged with Loyola College to create Concordia University on August 24, 1974.[1] History Sir George Williams ...