Wiener algebra
In mathematics, the Wiener algebra , named after Norbert Wiener and usually denoted by A (T ) , is the space of absolutely convergent Fourier series .[ 1] Here T denotes the circle group .
Banach algebra structure
The norm of a function f ∈ A (T ) is given by
‖ ‖ -->
f
‖ ‖ -->
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
|
f
^ ^ -->
(
n
)
|
,
{\displaystyle \|f\|=\sum _{n=-\infty }^{\infty }|{\hat {f}}(n)|,\,}
where
f
^ ^ -->
(
n
)
=
1
2
π π -->
∫ ∫ -->
− − -->
π π -->
π π -->
f
(
t
)
e
− − -->
i
n
t
d
t
{\displaystyle {\hat {f}}(n)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(t)e^{-int}\,dt}
is the n th Fourier coefficient of f . The Wiener algebra A (T ) is closed under pointwise multiplication of functions. Indeed,
f
(
t
)
g
(
t
)
=
∑ ∑ -->
m
∈ ∈ -->
Z
f
^ ^ -->
(
m
)
e
i
m
t
⋅ ⋅ -->
∑ ∑ -->
n
∈ ∈ -->
Z
g
^ ^ -->
(
n
)
e
i
n
t
=
∑ ∑ -->
n
,
m
∈ ∈ -->
Z
f
^ ^ -->
(
m
)
g
^ ^ -->
(
n
)
e
i
(
m
+
n
)
t
=
∑ ∑ -->
n
∈ ∈ -->
Z
{
∑ ∑ -->
m
∈ ∈ -->
Z
f
^ ^ -->
(
n
− − -->
m
)
g
^ ^ -->
(
m
)
}
e
i
n
t
,
f
,
g
∈ ∈ -->
A
(
T
)
;
{\displaystyle {\begin{aligned}f(t)g(t)&=\sum _{m\in \mathbb {Z} }{\hat {f}}(m)e^{imt}\,\cdot \,\sum _{n\in \mathbb {Z} }{\hat {g}}(n)e^{int}\\&=\sum _{n,m\in \mathbb {Z} }{\hat {f}}(m){\hat {g}}(n)e^{i(m+n)t}\\&=\sum _{n\in \mathbb {Z} }\left\{\sum _{m\in \mathbb {Z} }{\hat {f}}(n-m){\hat {g}}(m)\right\}e^{int},\qquad f,g\in A(\mathbb {T} );\end{aligned}}}
therefore
‖ ‖ -->
f
g
‖ ‖ -->
=
∑ ∑ -->
n
∈ ∈ -->
Z
|
∑ ∑ -->
m
∈ ∈ -->
Z
f
^ ^ -->
(
n
− − -->
m
)
g
^ ^ -->
(
m
)
|
≤ ≤ -->
∑ ∑ -->
m
|
f
^ ^ -->
(
m
)
|
∑ ∑ -->
n
|
g
^ ^ -->
(
n
)
|
=
‖ ‖ -->
f
‖ ‖ -->
‖ ‖ -->
g
‖ ‖ -->
.
{\displaystyle \|fg\|=\sum _{n\in \mathbb {Z} }\left|\sum _{m\in \mathbb {Z} }{\hat {f}}(n-m){\hat {g}}(m)\right|\leq \sum _{m}|{\hat {f}}(m)|\sum _{n}|{\hat {g}}(n)|=\|f\|\,\|g\|.\,}
Thus the Wiener algebra is a commutative unitary Banach algebra . Also, A (T ) is isomorphic to the Banach algebra l 1 (Z ) , with the isomorphism given by the Fourier transform.
Properties
The sum of an absolutely convergent Fourier series is continuous, so
A
(
T
)
⊂ ⊂ -->
C
(
T
)
{\displaystyle A(\mathbb {T} )\subset C(\mathbb {T} )}
where C (T ) is the ring of continuous functions on the unit circle.
On the other hand an integration by parts , together with the Cauchy–Schwarz inequality and Parseval's formula , shows that
C
1
(
T
)
⊂ ⊂ -->
A
(
T
)
.
{\displaystyle C^{1}(\mathbb {T} )\subset A(\mathbb {T} ).\,}
More generally,
L
i
p
α α -->
(
T
)
⊂ ⊂ -->
A
(
T
)
⊂ ⊂ -->
C
(
T
)
{\displaystyle \mathrm {Lip} _{\alpha }(\mathbb {T} )\subset A(\mathbb {T} )\subset C(\mathbb {T} )}
for
α α -->
>
1
/
2
{\displaystyle \alpha >1/2}
(see Katznelson (2004) ).
Wiener's 1/f theorem
Wiener (1932 , 1933 ) proved that if f has absolutely convergent Fourier series and is never zero, then its reciprocal 1/f also has an absolutely convergent Fourier series. Many other proofs have appeared since then, including an elementary one by Newman (1975 ).
Gelfand (1941 , 1941b ) used the theory of Banach algebras that he developed to show that the maximal ideals of A (T ) are of the form
M
x
=
{
f
∈ ∈ -->
A
(
T
)
∣ ∣ -->
f
(
x
)
=
0
}
,
x
∈ ∈ -->
T
,
{\displaystyle M_{x}=\left\{f\in A(\mathbb {T} )\,\mid \,f(x)=0\right\},\quad x\in \mathbb {T} ~,}
which is equivalent to Wiener's theorem.
See also
Notes
References
Arveson, William (2001) [1994], "A Short Course on Spectral Theory" , Encyclopedia of Mathematics , EMS Press
Gelfand, I. (1941a), "Normierte Ringe", Rec. Math. (Mat. Sbornik) , Nouvelle Série, 9 (51): 3–24, MR 0004726
Gelfand, I. (1941b), "Über absolut konvergente trigonometrische Reihen und Integrale", Rec. Math. (Mat. Sbornik) , Nouvelle Série, 9 (51): 51–66, MR 0004727
Katznelson, Yitzhak (2004), An introduction to harmonic analysis (Third ed.), New York: Cambridge Mathematical Library, ISBN 978-0-521-54359-0
Newman, D. J. (1975), "A simple proof of Wiener's 1/f theorem", Proceedings of the American Mathematical Society , 48 : 264–265, doi :10.2307/2040730 , ISSN 0002-9939 , MR 0365002
Wiener, Norbert (1932), "Tauberian Theorems", Annals of Mathematics , 33 (1): 1–100, doi :10.2307/1968102
Wiener, Norbert (1933), The Fourier integral and certain of its applications , Cambridge Mathematical Library, Cambridge University Press , doi :10.1017/CBO9780511662492 , ISBN 978-0-521-35884-2 , MR 0983891
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Basic concepts Main results Special Elements/Operators Spectrum Decomposition Spectral Theorem Special algebras Finite-Dimensional Generalizations Miscellaneous Examples Applications