Lax pair

In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the Lax equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems.

Definition

A Lax pair is a pair of matrices or operators dependent on time, acting on a fixed Hilbert space, and satisfying Lax's equation:

where is the commutator. Often, as in the example below, depends on in a prescribed way, so this is a nonlinear equation for as a function of .

Isospectral property

It can then be shown that the eigenvalues and more generally the spectrum of L are independent of t. The matrices/operators L are said to be isospectral as varies.

The core observation is that the matrices are all similar by virtue of

where is the solution of the Cauchy problem

where I denotes the identity matrix. Note that if P(t) is skew-adjoint, U(ts) will be unitary.

In other words, to solve the eigenvalue problem = λψ at time t, it is possible to solve the same problem at time 0, where L is generally known better, and to propagate the solution with the following formulas:

 (no change in spectrum),

Through principal invariants

The result can also be shown using the invariants for any . These satisfy due to the Lax equation, and since the characteristic polynomial can be written in terms of these traces, the spectrum is preserved by the flow.[1]

The above property is the basis for the inverse scattering method. In this method, L and P act on a functional space (thus ψ = ψ(tx)) and depend on an unknown function u(tx) which is to be determined. It is generally assumed that u(0, x) is known, and that P does not depend on u in the scattering region where The method then takes the following form:

  1. Compute the spectrum of , giving and
  2. In the scattering region where is known, propagate in time by using with initial condition
  3. Knowing in the scattering region, compute and/or

Spectral curve

If the Lax matrix additionally depends on a complex parameter (as is the case for, say, sine-Gordon), the equation defines an algebraic curve in with coordinates By the isospectral property, this curve is preserved under time translation. This is the spectral curve. Such curves appear in the theory of Hitchin systems.[2]

Zero-curvature representation

Any PDE which admits a Lax-pair representation also admits a zero-curvature representation.[3] In fact, the zero-curvature representation is more general and for other integrable PDEs, such as the sine-Gordon equation, the Lax pair refers to matrices that satisfy the zero-curvature equation rather than the Lax equation. Furthermore, the zero-curvature representation makes the link between integrable systems and geometry manifest, culminating in Ward's programme to formulate known integrable systems as solutions to the anti-self-dual Yang–Mills (ASDYM) equations.

Zero-curvature equation

The zero-curvature equations are described by a pair of matrix-valued functions where the subscripts denote coordinate indices rather than derivatives. Often the dependence is through a single scalar function and its derivatives. The zero-curvature equation is then It is so called as it corresponds to the vanishing of the curvature tensor, which in this case is . This differs from the conventional expression by some minus signs, which are ultimately unimportant.

Lax pair to zero-curvature

For an eigensolution to the Lax operator , one has If we instead enforce these, together with time independence of , instead the Lax equation arises as a consistency equation for an overdetermined system.

The Lax pair can be used to define the connection components . When a PDE admits a zero-curvature representation but not a Lax equation representation, the connection components are referred to as the Lax pair, and the connection as a Lax connection.

Examples

Korteweg–de Vries equation

The Korteweg–de Vries equation

can be reformulated as the Lax equation

with

(a Sturm–Liouville operator),

where all derivatives act on all objects to the right. This accounts for the infinite number of first integrals of the KdV equation.

Kovalevskaya top

The previous example used an infinite-dimensional Hilbert space. Examples are also possible with finite-dimensional Hilbert spaces. These include Kovalevskaya top and the generalization to include an electric field .[4]

Heisenberg picture

In the Heisenberg picture of quantum mechanics, an observable A without explicit time t dependence satisfies

with H the Hamiltonian and ħ the reduced Planck constant. Aside from a factor, observables (without explicit time dependence) in this picture can thus be seen to form Lax pairs together with the Hamiltonian. The Schrödinger picture is then interpreted as the alternative expression in terms of isospectral evolution of these observables.

Further examples

Further examples of systems of equations that can be formulated as a Lax pair include:

The last is remarkable, as it implies that both the Schwarzschild metric and the Kerr metric can be understood as solitons.

References

  1. ^ Hitchin, N. J. (1999). Integrable systems : twistors, loop groups, and Riemann surfaces. Oxford: Clarendon Press. ISBN 0198504217.
  2. ^ Hitchin, N. J. (1999). Integrable systems : twistors, loop groups, and Riemann surfaces. Oxford: Clarendon Press. ISBN 9780198504214.
  3. ^ Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. pp. 54–56. ISBN 978-0-19-857063-9.
  4. ^ Bobenko, A. I.; Reyman, A. G.; Semenov-Tian-Shansky, M. A. (1989). "The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions". Communications in Mathematical Physics. 122 (2): 321–354. Bibcode:1989CMaPh.122..321B. doi:10.1007/BF01257419. ISSN 0010-3616. S2CID 121752578.
  5. ^ A. Sergyeyev, New integrable (3+1)-dimensional systems and contact geometry, Lett. Math. Phys. 108 (2018), no. 2, 359-376, arXiv:1401.2122 doi:10.1007/s11005-017-1013-4
  • Lax, P. (1968), "Integrals of nonlinear equations of evolution and solitary waves", Communications on Pure and Applied Mathematics, 21 (5): 467–490, doi:10.1002/cpa.3160210503 archive
  • P. Lax and R.S. Phillips, Scattering Theory for Automorphic Functions[1], (1976) Princeton University Press.

Read other articles:

Telugu cinema (Tollywood) 1930s 1940s 1941 1942 1943 19441945 1946 1947 1948 1949 1950 1950s 1951 1952 1953 19541955 1956 1957 1958 1959 1960 1960s 1961 1962 1963 19641965 1966 1967 1968 1969 1970 1970s 1971 1972 1973 19741975 1976 1977 1978 1979 1980 1980s 1981 1982 1983 19841985 1986 1987 1988 1989 1990 1990s 1991 1992 1993 19941995 1996 1997 1998 1999 2000 2000s 2001 2002 2003 20042005 2006 2007 2008 2009 2010 2010s 2011 2012 2013 20142015 2016 2017 2018 2019 2020 2020s 2021 2022 2023 202...

 

 

Indonesiadalam tahun2023 ← 2021 2022 2023 2024 2025 → Dekade :2020-anAbad :ke-21Milenium :ke-3Lihat juga Sejarah Indonesia Garis waktu sejarah Indonesia Indonesia menurut tahun Bagian dari seri mengenai Sejarah Indonesia Prasejarah Manusia Jawa 1.000.000 BP Manusia Flores 94.000–12.000 BP Bencana alam Toba 75.000 BP Kebudayaan Buni 400 SM Kerajaan Hindu-Buddha Kerajaan Kutai 400–1635 Kerajaan Tarumanagara 450–900 Kerajaan Kalingga 594–782 Kerajaa...

 

 

3DCD and digital single cover[A]Singel oleh Jungkook featuring Jack Harlowdari album GoldenDirilis29 September 2023Durasi3:21LabelBig HitPencipta BloodPop David Stewart Jack Harlow Produser BloodPop David Stewart Kronologi singel Jungkook Seven (2023) 3D (2023) Kronologi singel Jack Harlow They Don't Love It(2023) 3D(2023) Video musik3D di YouTube 3D adalah lagu dari penyanyi asal Korea Selatan Jungkook dari BTS menampilkan penyanyi rap asal Amerika Serikat Jack Harlow, diri...

CangkuangDesaNegara IndonesiaProvinsiJawa BaratKabupatenCirebonKecamatanBabakanKode Kemendagri32.09.05.2001 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Cangkuang adalah desa di kecamatan Babakan, Cirebon, Jawa Barat, Indonesia. Bendungan Kemplang Kondisi sekitar Bendungan Kemplang. Bendungan Kemplang dibuat oleh kolonial belanda pada tahun 1928 yang bertujuan untuk menyiram tanaman tebu di sekitar Desa Cangkuang, karena saat itu belanda membuat pabrik tebu yang berada di Ke...

 

 

Pour les articles homonymes, voir Carpenter. Edward CarpenterBiographieNaissance 29 août 1844HoveDécès 28 juin 1929 (à 84 ans)SurreySépulture Mount Cemetery (en)Nationalité britanniqueFormation Trinity HallLycée HocheActivités Poète, philosophe, écrivainAutres informationsParti politique Parti travaillisteMouvement Socialisme libertaireSignatureVue de la sépulture.modifier - modifier le code - modifier Wikidata Edward Carpenter, né le 29 août 1844 à Hove et mort le 28 juin...

 

 

Delusion that others can hear one's thoughts Medical conditionThought broadcastingOther namesThought diffusion[1]Usual onsetEarly adulthood (16-30 years)[2]DurationUsually chronic among the elderly population[3]Differential diagnosisEcho de la pensée,[4] thought withdrawal and thought insertion[5]Frequency6% among individuals with schizophrenia in one study Thought broadcasting is a type of delusional condition in which the affected person believes tha...

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. LeismaniasisInformasi umumSpesialisasiPenyakit menular  Life cycle of the Leishmaniasis parasite. Source: CDC Leishmaniasis adalah penya...

 

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

 

Online communication software This article is about Internet communication software. For the Greek and Roman goddess, see Eris (mythology). For other uses, see Discord (disambiguation). DiscordLogo used since May 2021Screenshot Screenshot depicting Discord's home screen in 2023Developer(s)Discord Inc.[note 1]Initial releaseMay 13, 2015; 8 years ago (2015-05-13)Written in Client: TypeScript (with React)[1] Server: Elixir,[2] Python,[3] Rust, ...

Opioid analgesic drug Not to be confused with dipyrone. DipyanoneIdentifiers IUPAC name 4,4-diphenyl-6-(1-pyrrolidinyl)-heptan-3-one CAS Number60996-94-3 YUNIIP8UN8D5PUNChemical and physical dataFormulaC23H29NOMolar mass335.491 g·mol−13D model (JSmol)Interactive image SMILES CCC(=O)C(CC(C)N1CCCC1)(c1ccccc1)c1ccccc1 Dipyanone is an opioid analgesic which has been sold as a designer drug, first identified in Germany in 2021.[1] It is closely related to medically used drugs ...

 

 

Sporting event delegationGuinea at the2008 Summer OlympicsIOC codeGUINOCComité National Olympique et Sportif Guinéenin BeijingCompetitors5 in 3 sportsFlag bearer Fatmata FofanahMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19681972–1976198019841988199219962000200420082012201620202024 Guinea sent a delegation of five athletes compete at the 2008 Summer Olympics in Beijing, China, which included Mariama Dalanda Barry in taekwondo,[1] Fatmata Fofa...

 

 

English footballer For the film director, see Thomas H. Ince. Tom Ince Ince playing for Hull City in 2014Personal informationFull name Thomas Christopher Ince[1]Date of birth (1992-01-30) 30 January 1992 (age 32)[2]Place of birth Stockport, EnglandHeight 5 ft 10 in (1.78 m)[3]Position(s) Attacking midfielder, winger, forwardTeam informationCurrent team WatfordNumber 7Youth career2008–2010 LiverpoolSenior career*Years Team Apps (Gls)2010–2011 Liv...

  关于与「友谊勋章 (俄罗斯)」標題相近或相同的条目页,請見「友谊勋章 (消歧义)」。 友谊勋章类型单级勋章(仅设有一个等级)授予原因加强各民族友谊、交流与合作国家/地区俄罗斯 颁发单位 俄羅斯颁授资格俄罗斯国民及世界各民族人民設立時間1994年3月2日[1]首次颁发康斯坦丁·蒂托夫(萨马拉州州长)绶带 优先顺序上等荣誉勋章下等光荣父母�...

 

 

2008 political crisis in Ukraine Politics of Ukraine Constitution Human rights Presidency President Volodymyr Zelenskyy Office of the President National Security and Defence Council Presidential representatives Presidential symbols Executive Prime Minister Denys Shmyhal Cabinet Shmyhal Government Legislature Verkhovna Rada (parliament) Chairman: Ruslan Stefanchuk Committees People's Deputy of Ukraine Imperative mandate Judiciary Constitutional Court Supreme Court Prosecutor General Local gove...

 

 

Musim Panas Sounds Good!(Summer Love Sounds Good!)(真夏のSounds Good! Manatsu No Sounds Good!)Sampul edisi reguler berbingkai putih yang ditampilkan oleh Dhike, Noella, Kinal, Akicha, Hanna, Yupi, Beby, Nabilah, Haruka, Naomi, Ayana, Rona, Vienny, Veranda, Melody, dan ShaniaSingel oleh JKT48Sisi-AMusim Panas Sounds Good! (Manatsu no Sounds Good!) / SenbatsuSisi-BBingo! / Tim J + Tim KIIIKimi to Boku no Kankei (Hubungan Kau dan Aku) / Melody dan NabilahManatsu no Sounds Good! (Summer Love S...

Zoo in Manhattan, New York Central Park ZooCentral Park Zoo logoCentral area of the Central Park Zoo40°46′4″N 73°58′18″W / 40.76778°N 73.97167°W / 40.76778; -73.97167Date opened1864 (menagerie); December 2, 1934 (zoo); August 8, 1988 (renovated)LocationCentral Park, New York City, United StatesLand area6.5 acres (2.6 ha)MembershipsAZA[1]OwnerWildlife Conservation SocietyPublic transit accessNew York City Subway: ​​ trains at Fif...

 

 

This article is part of a series onPolitics of Greece Constitution Constitutional history Human rights Executive Head of state President of the Republic (list): Katerina Sakellaropoulou Presidential Departments Government Prime Minister (list): Kyriakos Mitsotakis Cabinet: Kyr. Mitsotakis II Legislature Speaker: Konstantinos Tasoulas Presidium Conference of Presidents Parliamentary committees Constituencies Apportionment Judiciary Supreme courts Special Highest Court Court of Cassation Counc...

 

 

American painter Karl KnathsKarl Knaths, 1930BornOtto Karl Knaths[3][4][5][6](1891-10-21)October 21, 1891Eau Claire, Wisconsin, USDiedMarch 9, 1971(1971-03-09) (aged 79)[7][8]Provincetown, Massachusetts, USNationalityAmericanOther namesOtto Knaths, Otto Karl Knaths, Otto George Knaths, Karl O. Knaths, Otto K. KnathsEducationSchool of the Art Institute of ChicagoKnown forModern artMovementCubism, Abstract artSpouseHelen Lena Weinri...

Alexandria Ocasio-Cortez Membro della Camera dei rappresentanti - New York, distretto n.14In caricaInizio mandato3 gennaio 2019 PredecessoreJoseph Crowley Dati generaliPartito politicoPartito Democratico Titolo di studioBachelor of Arts UniversitàUniversità di Boston Firma Alexandria Ocasio-Cortez, nota anche semplicemente con le sue iniziali, AOC, (/oʊˌkɑːsioʊ kɔːrˈtɛz/, pronuncia spagnola: [oˈkasjo koɾˈte*s][1]; New York, 13 ottobre 1989), è una po...

 

 

Vanessa KirbyKirby pada 2018Lahir18 April 1988 (umur 36)Wimbledon, London, InggrisPendidikanUniversitas ExeterPekerjaanAktrisTahun aktif2010–sekarangOrang tuaRoger Kirby (bapak) Vanessa Nuala Kirby (lahir 18 April 1988) adalah seorang aktris asal Inggris. Ia meraih perhatian atas peran-perannya dalam adaptasi BBC dari Great Expectations (2011) dan dalam film komedi romansa About Time (2013). Filmografi Film Tahun Judul wewenang Catatan 2010 Love/Loss Jane 2012 Rise, TheThe Rise N...