Invariants of tensors

In mathematics, in the fields of multilinear algebra and representation theory, the principal invariants of the second rank tensor are the coefficients of the characteristic polynomial[1]

,

where is the identity operator and are the roots of the polynomial and the eigenvalues of .

More broadly,any scalar-valued function is an invariant of if and only if for all orthogonal . This means that a formula expressing an invariant in terms of components, , will give the same result for all Cartesian bases. For example, even though individual diagonal components of will change with a change in basis, the sum of diagonal components will not change.

Properties

The principal invariants do not change with rotations of the coordinate system (they are objective, or in more modern terminology, satisfy the principle of material frame-indifference) and any function of the principal invariants is also objective.

Calculation of the invariants of rank two tensors

In a majority of engineering applications, the principal invariants of (rank two) tensors of dimension three are sought, such as those for the right Cauchy-Green deformation tensor which has the eigenvalues , , and . Where , , and are the principal stretches, i.e. the eigenvalues of .

Principal invariants

For such tensors, the principal invariants are given by:

For symmetric tensors, these definitions are reduced.[2]

The correspondence between the principal invariants and the characteristic polynomial of a tensor, in tandem with the Cayley–Hamilton theorem reveals that

where is the second-order identity tensor.

Main invariants

In addition to the principal invariants listed above, it is also possible to introduce the notion of main invariants[3][4]

which are functions of the principal invariants above. These are the coefficients of the characteristic polynomial of the deviator , such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called deviatoric, providing shear effects.

Mixed invariants

Furthermore, mixed invariants between pairs of rank two tensors may also be defined.[4]

Calculation of the invariants of order two tensors of higher dimension

These may be extracted by evaluating the characteristic polynomial directly, using the Faddeev-LeVerrier algorithm for example.

Calculation of the invariants of higher order tensors

The invariants of rank three, four, and higher order tensors may also be determined.[5]

Engineering applications

A scalar function that depends entirely on the principal invariants of a tensor is objective, i.e., independent of rotations of the coordinate system. This property is commonly used in formulating closed-form expressions for the strain energy density, or Helmholtz free energy, of a nonlinear material possessing isotropic symmetry.[6]

This technique was first introduced into isotropic turbulence by Howard P. Robertson in 1940 where he was able to derive Kármán–Howarth equation from the invariant principle.[7] George Batchelor and Subrahmanyan Chandrasekhar exploited this technique and developed an extended treatment for axisymmetric turbulence.[8][9][10]

Invariants of non-symmetric tensors

A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part. For example, if the Cartesian components of are

the first step would be to evaluate the axial vector associated with the skew-symmetric part. Specifically, the axial vector has components

The next step finds the principal values of the symmetric part of . Even though the eigenvalues of a real non-symmetric tensor might be complex, the eigenvalues of its symmetric part will always be real and therefore can be ordered from largest to smallest. The corresponding orthonormal principal basis directions can be assigned senses to ensure that the axial vector points within the first octant. With respect to that special basis, the components of are

The first three invariants of are the diagonal components of this matrix: (equal to the ordered principal values of the tensor's symmetric part). The remaining three invariants are the axial vector's components in this basis: . Note: the magnitude of the axial vector, , is the sole invariant of the skew part of , whereas these distinct three invariants characterize (in a sense) "alignment" between the symmetric and skew parts of . Incidentally, it is a myth that a tensor is positive definite if its eigenvalues are positive. Instead, it is positive definite if and only if the eigenvalues of its symmetric part are positive.

See also

References

  1. ^ Spencer, A. J. M. (1980). Continuum Mechanics. Longman. ISBN 0-582-44282-6.
  2. ^ Kelly, PA. "Lecture Notes: An introduction to Solid Mechanics" (PDF). Retrieved 27 May 2018.
  3. ^ Kindlmann, G. "Tensor Invariants and their Gradients" (PDF). Retrieved 24 Jan 2019.
  4. ^ a b Schröder, Jörg; Neff, Patrizio (2010). Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer.
  5. ^ Betten, J. (1987). "Irreducible Invariants of Fourth-Order Tensors". Mathematical Modelling. 8: 29–33. doi:10.1016/0270-0255(87)90535-5.
  6. ^ Ogden, R. W. (1984). Non-Linear Elastic Deformations. Dover.
  7. ^ Robertson, H. P. (1940). "The Invariant Theory of Isotropic Turbulence". Mathematical Proceedings of the Cambridge Philosophical Society. 36 (2). Cambridge University Press: 209–223. Bibcode:1940PCPS...36..209R. doi:10.1017/S0305004100017199. S2CID 122767772.
  8. ^ Batchelor, G. K. (1946). "The Theory of Axisymmetric Turbulence". Proc. R. Soc. Lond. A. 186 (1007): 480–502. Bibcode:1946RSPSA.186..480B. doi:10.1098/rspa.1946.0060.
  9. ^ Chandrasekhar, S. (1950). "The Theory of Axisymmetric Turbulence". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 242 (855): 557–577. Bibcode:1950RSPTA.242..557C. doi:10.1098/rsta.1950.0010. S2CID 123358727.
  10. ^ Chandrasekhar, S. (1950). "The Decay of Axisymmetric Turbulence". Proc. R. Soc. A. 203 (1074): 358–364. Bibcode:1950RSPSA.203..358C. doi:10.1098/rspa.1950.0143. S2CID 121178989.

Read other articles:

Begonia holtonis TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladfabidsOrdoCucurbitalesFamiliBegoniaceaeGenusBegoniaSpesiesBegonia holtonis A.DC., 1859 lbs Begonia holtonis adalah spesies tumbuhan yang tergolong ke dalam famili Begoniaceae. Spesies ini juga merupakan bagian dari ordo Cucurbitales. Nama ilmiah spesies ini pertama kali diterbitkan oleh Alphonse Pyramus de Candolle pada 1859. Referensi...

 

Sports team of the European region of Occitania OccitaniaNickname(s)La SeleccionAssociationOccitania Football AssociationConfederationConIFAHead coach Sylvain BlaiseMost capsRose Lavaud (5)Top scorerLaurie Saulnier (6)Rose Lavaud (6) First colours Second colours First international Occitania 12–1 Lusatian Serbian (Italy; 19 June 2016)Biggest win Occitania 12–1 Lusatian Serbian (Italy; 19 June 2016)Biggest defeat Occitania 2–3 South Tyrol (Italy; 24 June 2016)Europead...

 

Klub Koszykówki WłocławekPallacanestro Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Bianco, blu e verde Dati societari Città Włocławek Nazione  Polonia Confederazione FIBA Europe Federazione PZK Campionato Polska Liga Koszykówki Fondazione 1990 Denominazione Nobiles Włocławek(1990-1998)Anwil Włocławek(1998-presente) Presidente Arkadiusz Lewandowski General manager Hubert Hejman Allenatore Przemysław Frasunkiewicz Impianto Hala Mistrzów(4,000 posti) Sito w...

† Палеопропитеки Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:�...

 

1950 Indian filmArzooFilm posterDirected byShaheed LatifWritten byIsmat ChugtaiBased onWuthering Heightsby Emily BrontëProduced byHiten ChowdharyStarringDilip KumarKamini KaushalShashikalaCinematographyS SrivastavaEdited byJ. S. DiwadkarMusic byAnil BiswasRelease date 16 June 1950 (1950-06-16) CountryIndiaLanguageHindi Arzoo (lit. 'Desire') is a 1950 Indian Hindi-language romantic drama film directed by Shaheed Latif and produced by Hiten Chaudhary. The film stars Dilip...

 

Dub-LDub-L in 2011Background informationBirth nameMichael P. Delaney[1]BornNew York, NYGenresHip hop, trip hop, R&B, danceOccupation(s)Producer, songwriter, DJ, MC, filmmakerYears active1997–presentWebsiteDub-L.comMusical artist Michael P. Delaney, better known by his stage name Dub-L, is an American record producer, recording artist and filmmaker. Early life Delaney was born and raised in the East Village in New York City.[2][3] He began writing graffiti in 1991...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

رحلة داخل امرأة الصنف دراما الموضوع بالرغم من أن كمال رجل مبادئ إلا أنه مع الوقت يترك كل شئ لتحقيق طموحه، ويهمل زوجته مما يدفعها لأحضان شخص آخر تاريخ الصدور 6 مارس 1978 مدة العرض 90 دقيقة البلد مصر اللغة الأصلية العربية (العامية المصرية) الطاقم المخرج أشرف فهمي الإنتاج جلال في�...

 

Pierre DuhemLahirPierre Maurice Marie Duhem(1861-06-09)9 Juni 1861Paris, PrancisMeninggal14 September 1916(1916-09-14) (umur 55)Cabrespine, PrancisEraFilsafat abad ke-19KawasanFilsafat BaratMinat utamaFisika, filsafat sains, sejarah sains, epistemologiGagasan pentingHolisme konfirmasi, persamaan Gibbs–Duhem, tesis Duhem–Quine Dipengaruhi Ernst Mach, Blaise Pascal, William John Macquorn Rankine Memengaruhi Émile Jouguet, John Worrall, Thomas Kuhn, Stanley Jaki, Stephen Men...

This is a list of Billboard magazine's Top Hot 100 songs of 2007.[1] Beyoncé topped the chart with her song Irreplaceable and reached number 62 with Beautiful Liar, a collaboration with Shakira. Barbadian singer Rihanna had three songs on the chart, Umbrella at position 2 and Shut Up and Drive at position 90 from her album Good Girl Gone Bad, and Break It Off at position 85 from her album A Girl Like Me. Akon lent his vocals to six songs on the chart, four of which are in the top tw...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2021)   لمعانٍ أخرى، طالع محمد إبراهيم (توضيح). محمد إبراهيم معلومات شخصية مركز اللعب الظهير الأيسر الجنسية لغة مصرية  معلومات النادي النادي الحالي النجمة �...

 

Questa voce o sezione sull'argomento linee ferroviarie non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Linea principale NankaiNome originale南海本線 Stati attraversatiGiappone InizioNamba FineWakayamashi Attivazione1885 GestoreFerrovie Nankai Precedenti gestoriFerrovie Hankai Lunghezza64,2 km Scartamento1067 mm Elettrificazione1500 V DC Diramazi...

Strukturformel Allgemeines Name 2-Phenylethanol Andere Namen Phenethylalkohol 2-Phenylethylalkohol β-Phenylethylalkohol Benzylcarbinol Phenethanol PHENETHYL ALCOHOL (INCI)[1] Summenformel C8H10O Kurzbeschreibung farblose, nach Rosenöl riechende Flüssigkeit[2] Externe Identifikatoren/Datenbanken CAS-Nummer 60-12-8 EG-Nummer 200-456-2 ECHA-InfoCard 100.000.415 PubChem 6054 ChemSpider 5830 DrugBank DB02192 Wikidata Q209463 Eigenschaften Molare Masse 122,17 g·mol−1 Aggregat...

 

Cet article concerne la langue bretonne. Pour les autres significations, voir Breton (homonymie). BretonBrezhoneg Pays France Région Bretagne Nombre de locuteurs 207 000 sur les cinq départements de la Bretagne historique en 2018[1] 16 000 en région Île-de-France en 2007[2] Nom des locuteurs bretonnants, brittophones Typologie SVO + V2, flexionnelle, accusative, à accent d'intensité Classification par famille - langues indo-européennes - langues celtiques - langues celti...

 

Television station in Sapporo, Japan You can help expand this article with text translated from the corresponding article in Japanese. (June 2024) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-t...

Voce principale: Unione Sportiva Cremonese. Unione Sportiva CremoneseStagione 1990-1991 Sport calcio Squadra Cremonese AllenatoreTarcisio Burgnich poi a febbraio, Gustavo Giagnoni PresidenteDomenico Luzzara Serie B3º posto (promossa in Serie A) Coppa ItaliaOttavi di finale Maggiori presenzeCampionato: Rampulla (38) Miglior marcatoreCampionato: Dezotti (11) StadioStadio Giovanni Zini 1989-1990 1991-1992 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'...

 

il laboratorio Destiny (NASA) Destiny collegato alla ISS Il laboratorio Destiny è un modulo di ricerca Statunitense sviluppato per la Stazione spaziale internazionale. Il modulo è stato collegato al modulo Unity ed è stato attivato in cinque giorni di lavoro nel Febbraio 2001. Destiny è il primo laboratorio orbitale NASA dal tempo dello Skylab cioè dal Febbraio 1974. La Boeing iniziò la costruzione del laboratorio di ricerca nel 1995 al Marshall Space Flight Center di Huntsville in Alab...

 

FantasticGenreKomedi romantis, DramaPemeranJoo Sang-wook Kim Hyun-joo Park Si-yeon Ji SooNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiDurasi80 hingga 90 menitRumah produksiAStory Co., Ltd.Rilis asliJaringanJTBCRilis2 September (2016-09-02) –22 Oktober 2016 (2016-10-22) Fantastic (Hangul: 판타스틱; RR: Pantaseutik) adalah serial televisi Korea Selatan tahun 2016 yang dibintangi Kim Hyun-joo dan Joo Sang-wook sebagai pemeran utama. D...

Al Ewing Al Ewing (12 agosto 1977) è un fumettista britannico, noto principalmente per il suo ruolo di scrittore per la Marvel Comics su testate come Immortal Hulk, Mighty Avengers e Ultimates. Indice 1 Carriera 2 Opere 2.1 Dynamite Entertainment 2.2 Marvel Comics 2.3 Boom!Studios 3 Note 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Carriera Debutta in madrepatria sulla storica testata 2000 A.D., scrivendo storie di personaggi quali Judge Dredd e Zombo. Il suo primo incarico per u...

 

世界大戦争 The Last War[出典 1]監督 松林宗恵(本編) 円谷英二(特撮) 脚本 八住利雄 馬淵薫 製作 藤本真澄 田中友幸 出演者 フランキー堺 宝田明 乙羽信子 星由里子 山村聡 音楽 團伊玖磨撮影 西垣六郎(本編) 有川貞昌(特撮) 編集 岩下広一製作会社 東宝[6][7]配給 東宝[6][7]公開 1961年10月8日[出典 2]上映時間 110分[出典 3][�...