Curvature form

In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.

Definition

Let G be a Lie group with Lie algebra , and PB be a principal G-bundle. Let ω be an Ehresmann connection on P (which is a -valued one-form on P).

Then the curvature form is the -valued 2-form on P defined by

(In another convention, 1/2 does not appear.) Here stands for exterior derivative, is defined in the article "Lie algebra-valued form" and D denotes the exterior covariant derivative. In other terms,[1]

where X, Y are tangent vectors to P.

There is also another expression for Ω: if X, Y are horizontal vector fields on P, then[2]

where hZ means the horizontal component of Z, on the right we identified a vertical vector field and a Lie algebra element generating it (fundamental vector field), and is the inverse of the normalization factor used by convention in the formula for the exterior derivative.

A connection is said to be flat if its curvature vanishes: Ω = 0. Equivalently, a connection is flat if the structure group can be reduced to the same underlying group but with the discrete topology.

Curvature form in a vector bundle

If EB is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan:

where is the wedge product. More precisely, if and denote components of ω and Ω correspondingly, (so each is a usual 1-form and each is a usual 2-form) then

For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e.

using the standard notation for the Riemannian curvature tensor.

Bianchi identities

If is the canonical vector-valued 1-form on the frame bundle, the torsion of the connection form is the vector-valued 2-form defined by the structure equation

where as above D denotes the exterior covariant derivative.

The first Bianchi identity takes the form

The second Bianchi identity takes the form

and is valid more generally for any connection in a principal bundle.

The Bianchi identities can be written in tensor notation as:

The contracted Bianchi identities are used to derive the Einstein tensor in the Einstein field equations, the bulk of general theory of relativity.[clarification needed]

Notes

  1. ^ since . Here we use also the Kobayashi convention for the exterior derivative of a one form which is then
  2. ^ Proof:

References

See also

Read other articles:

Cyperus ligularis Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Liliopsida Ordo: Poales Famili: Cyperaceae Genus: Cyperus Spesies: Cyperus ligularis Nama binomial Cyperus ligularisL. Cyperus ligularis adalah spesies tumbuhan yang tergolong ke dalam famili Cyperaceae. Spesies ini juga merupakan bagian dari ordo Poales. Spesies Cyperus ligularis sendiri merupakan bagian dari genus Cyperus.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh L.. Referensi ^ ...

 

Artikel ini bukan mengenai Kraków. Krakow am See Bekas sinagoge Lambang kebesaranLetak Krakow am See di Rostock Krakow am See Tampilkan peta JermanKrakow am See Tampilkan peta Mecklenburg-VorpommernKoordinat: 53°39′N 12°16′E / 53.650°N 12.267°E / 53.650; 12.267Koordinat: 53°39′N 12°16′E / 53.650°N 12.267°E / 53.650; 12.267NegaraJermanNegara bagianMecklenburg-VorpommernKreisRostock Municipal assoc.Krakow am See Pemerintahan ...

 

Pour les articles homonymes, voir Victoria. Victoria De haut en bas et de gauche à droite : l'Assemblée législative de la Colombie-Britannique, centre-ville de Victoria, Château de Craigdarroch, cathédrale de l'Église du Christ (en), l'Empress Hotel et le phare de Fisgard. Administration Pays Canada Province Colombie-Britannique Statut municipal cité (city) Maire Mandat Marianne Alto (en) 2022-2026 FondateurDate de fondation Compagnie de la Baie d'Hudson1843 Constitutio...

صورة من البوابة الرئيسية لويكبيديا تظهر الإصدارات اللغوية المختلفة مرتبة حسب عدد المقالات. فيما يلي قائمة بالإصدارات اللغوية لـويكيبيديا، والتي شملت 317 إصدارا لغويا مختلفا منهم 306 إصدارا نشطا؛ لمعرفة عدد المواضيع بكل إصدار راجع القائمة الرئيسية. أكواد إصدارات ويكيبيديا �...

 

Town in Aleppo, SyriaKhanasir خناصرTownMinistry of Local Administration, Khanasir. Note old parts in the facade.KhanasirLocation in SyriaCoordinates: 35°47′0″N 37°29′50″E / 35.78333°N 37.49722°E / 35.78333; 37.49722Country SyriaGovernorateAleppoDistrictAl-SafiraSubdistrictKhanasirPopulation (2004 census) • Total2,397Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST)Area codeCountry code: 963 Khanasir (Arabic: خناصر /...

 

Marietta Martin X-24A adalah pesawat eksperimental supersonik AS yang dikembangkan dari gabungan program USAF - NASA bernama PILOT (1963-1975). Marietta Martin X-24A ini dirancang dan dibangun untuk menguji konsep mengangkat tubuh, bereksperimen dengan konsep dari unpowered reentry dan mendarat, kemudian digunakan oleh Space Shuttle . Spesifikasi (X-24A) Karakteristik umum Kru: satu pilot Panjang: 24 ft 6 in (7.47 m) Lebar sayap: 11 ft 6 in (3.51 m) Tinggi: 9 ft 7 in (2.92 m) Area sayap: 195...

Tanzim Hurras al-Din (Arab : تنظيم حراس الدين , diromanisasi : Tanẓīm Ḥurrās ad-Dīn , menyala.  'Organisasi Penjaga Agama') juga dikenal sebagai Al-Qaeda di Suriah, adalah organisasi Jihadis Salafi yang berperang di Suriah Perang sipil. Pemimpin kelompok tersebut, Abu Humam al-Shami adalah komandan militer umum Front al-Nusra yang sudah tidak ada lagi, dan pernah berperang untuk Al-Qaeda pada perang saudara Afghanistan tahun 1990-an dan pemberontakan Irak. Hur...

 

Novel by Jeffrey Archer This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Kane and Abel novel – news · newspapers · books · scholar · JSTOR (May 2021) Kane and Abel First editionAuthorJeffrey ArcherCountryUnited KingdomLanguageEnglishPublisherHodder & StoughtonPublication date1979Media ...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

American artist, playwright (1935–1997) Billy GrahamBornWilliam Henderson Graham(1935-07-01)July 1, 1935DiedApril 4, 1997 (aged 61)NationalityAmerican Area(s)Penciller, Inker, EditorNotable worksLuke Cage, Black PantherAwardsAdelcohttps://www.facebook.com/ashantiprincessmovie William Henderson Graham[1] (July 1, 1935 – April 4, 1997)[2][1] was an African-American comics artist best known for his work on the Marvel Comics series Luke Cage, Hero for Hire and the Jung...

 

Money Heist: KoreaHangul종이의 집 GenrePerampokanDrama kejahatanPembuatNetflixBerdasarkanMoney Heistoleh Álex PinaDitulis olehRyu Yong-jaeSutradaraKim Sung-hoPemeranYoo Ji-taePark Hae-sooJeon Jong-seoLee Won-jongPark Myung-hoonPenata musikKim Tae-seongNegara asal Korea SelatanBahasa asliKoreaJmlh. episode6ProduksiPengaturan kameraMultikameraDurasi60 menitRumah produksiBHContent ZiumDistributorNetflixRilis asliJaringanNetflixFormat gambar4K (Ultra HD)Format audioDolby DigitalR...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري القبرصي لكرة القدم 1971–1972 تفاصيل الموسم الدوري القبرصي الدرجة الأولى  النسخة 33  البلد قبرص...

British colony in North America from 1691 to 1776 Not to be confused with Massachusetts Bay Colony. Province of Massachusetts Bay1691–1780 Flag Coat of arms(1691-1774) Anthem:  God Save the King (1745–1774) Map depicting the colonial claims related to the provinceCapitalBostonCommon languagesEnglish, French, Massachusett, Mi'kmaqReligion CongregationalismGovernmentSelf-governing colony(1691–1774)Crown colony(1774)Provisional government(1774–1780)Monarch • 1691–...

 

Jan Steen, Possibilità di scelta fra la ricchezza e la gioventù, particolare, 1661-1663 circa La ricchezza, in senso economico, è la disponibilità di beni materiali e denaro. Misura il benessere di un soggetto fisico (persone, famiglie etc.) o giuridico (società, impresa, Stato etc.) ed è un parametro in grado di stimare la quantità di beni tangibili e intangibili, nella piena disponibilità del soggetto, che abbiano valore di mercato e siano in grado di produrre reddito.[1] Il...

 

International basketball event in Mannheim, Germany Albert Schweitzer Tournament (AST)SportBasketballFounded1958No. of teams12Country GermanyContinent EuropeMost recentchampion(s) Australia(2nd title)Most titles United States(10 titles)Official websiteast.basketball-bund.de The DBB Albert Schweitzer Tournament (German: Albert-Schweitzer-Turnier, abbreviated as AST), full name DBB Albert Schweitzer World Under-18 Tournament (German: DBB Albert Schweitzer Welt-Unter-18-Turn...

2012 studio album by Houston PersonNaturallyStudio album by Houston PersonReleasedOctober 9, 2012RecordedJuly 5, 2012StudioVan Gelder Studio, Englewood Cliffs, NJGenreJazzLength52:18LabelHighNoteHCD 7245ProducerHouston PersonHouston Person chronology So Nice(2011) Naturally(2012) Nice 'n' Easy(2013) Naturally is an album by saxophonist Houston Person which was recorded in 2012 and released on the HighNote label.[1] Reception Professional ratingsReview scoresSourceRatingAllMusi...

 

Florida Naval MilitiaActive1897–19031911–19171934–1941Country United StatesAllegiance FloridaTypeNaval militiaRoleMilitary reserve forceMilitary unit The Florida Naval Militia was the official naval militia of the state of Florida. Naval militias were organized as naval parallels to the National Guard as dual federal and state obligations, with the naval militias normally being under state control but subject to federal activation. The Florida Naval Militia was active during t...

 

Piero PatrussiInformazioni personaliArbitro di Calcio SezioneRavenna Attività nazionale AnniCampionatoRuolo 1975-19831977-1982Serie BSerie AArbitroArbitro Premi AnnoPremio 1978Fischietto d'argento Piero Patrussi (Arezzo, 21 maggio 1942) è un ex arbitro di calcio italiano. Indice 1 Carriera sportiva 2 Note 3 Voci correlate 4 Collegamenti esterni Carriera sportiva Fu inserito nell'organico arbitrale della CAN per la Serie A e B tra il 1975 e il 1983. La prima gara diretta in Serie B fu Pescar...

Гребля на байдарках и каноэ на почтовой марке Азербайджана, посвящённой Европейским играм 2015 Соревнования по гребле на байдарках и каноэ на Европейских играх 2015 проходили в Азербайджане, городе Мингечевир, в Олимпийском учебно-спортивном центре «Кюр» 15 и 16 июня. В рамка�...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Società Sportiva Chieti Calcio. Società Sportiva ChietiStagione 1975-1976 Sport calcio Squadra Chieti Allenatore Adelmo Capelli, poi Omero Tognon Presidente Guido Angelini Serie C19º posto, girone B (retrocesso in Serie D) Coppa Italia SemiproFase eliminatoria...