Hearing the shape of a drum

Mathematically ideal drums with membranes of these two different shapes (but otherwise identical) would sound the same, because the eigenfrequencies are all equal, so the timbral spectra would contain the same overtones. This example was constructed by Gordon, Webb and Wolpert. Notice that both polygons have the same area and perimeter.

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.

"Can One Hear the Shape of a Drum?" is the title of a 1966 article by Mark Kac in the American Mathematical Monthly which made the question famous, though this particular phrasing originates with Lipman Bers. Similar questions can be traced back all the way to physicist Arthur Schuster in 1882.[1] For his paper, Kac was given the Lester R. Ford Award in 1967 and the Chauvenet Prize in 1968.[2]

The frequencies at which a drumhead can vibrate depend on its shape. The Helmholtz equation calculates the frequencies if the shape is known. These frequencies are the eigenvalues of the Laplacian in the space. A central question is whether the shape can be predicted if the frequencies are known; for example, whether a Reuleaux triangle can be recognized in this way.[3] Kac admitted that he did not know whether it was possible for two different shapes to yield the same set of frequencies. The question of whether the frequencies determine the shape was finally answered in the negative in the early 1990s by Carolyn S. Gordon, David Webb and Scott A. Wolpert.

Formal statement

More formally, the drum is conceived as an elastic membrane whose boundary is clamped. It is represented as a domain D in the plane. Denote by λn the Dirichlet eigenvalues for D: that is, the eigenvalues of the Dirichlet problem for the Laplacian:

Two domains are said to be isospectral (or homophonic) if they have the same eigenvalues. The term "homophonic" is justified because the Dirichlet eigenvalues are precisely the fundamental tones that the drum is capable of producing: they appear naturally as Fourier coefficients in the solution wave equation with clamped boundary.

Therefore, the question may be reformulated as: what can be inferred on D if one knows only the values of λn? Or, more specifically: are there two distinct domains that are isospectral?

Related problems can be formulated for the Dirichlet problem for the Laplacian on domains in higher dimensions or on Riemannian manifolds, as well as for other elliptic differential operators such as the Cauchy–Riemann operator or Dirac operator. Other boundary conditions besides the Dirichlet condition, such as the Neumann boundary condition, can be imposed. See spectral geometry and isospectral as related articles.

The answer

One-parameter family of isospectral drums
Eigenmodes and corresponding eigenvalues of the Laplace operator on the GWW domains

In 1964, John Milnor observed that a theorem on lattices due to Ernst Witt implied the existence of a pair of 16-dimensional flat tori that have the same eigenvalues but different shapes. However, the problem in two dimensions remained open until 1992, when Carolyn Gordon, David Webb, and Scott Wolpert constructed, based on the Sunada method, a pair of regions in the plane that have different shapes but identical eigenvalues. The regions are concave polygons. The proof that both regions have the same eigenvalues uses the symmetries of the Laplacian. This idea has been generalized by Buser, Conway, Doyle, and Semmler[4] who constructed numerous similar examples. So, the answer to Kac's question is: for many shapes, one cannot hear the shape of the drum completely. However, some information can be inferred.

On the other hand, Steve Zelditch proved that the answer to Kac's question is positive if one imposes restrictions to certain convex planar regions with analytic boundary. It is not known whether two non-convex analytic domains can have the same eigenvalues. It is known that the set of domains isospectral with a given one is compact in the C topology. Moreover, the sphere (for instance) is spectrally rigid, by Cheng's eigenvalue comparison theorem. It is also known, by a result of Osgood, Phillips, and Sarnak that the moduli space of Riemann surfaces of a given genus does not admit a continuous isospectral flow through any point, and is compact in the Fréchet–Schwartz topology.

Weyl's formula

Weyl's formula states that one can infer the area A of the drum by counting how rapidly the λn grow. We define N(R) to be the number of eigenvalues smaller than R and we get

where d is the dimension, and is the volume of the d-dimensional unit ball. Weyl also conjectured that the next term in the approximation below would give the perimeter of D. In other words, if L denotes the length of the perimeter (or the surface area in higher dimension), then one should have

For a smooth boundary, this was proved by Victor Ivrii in 1980. The manifold is also not allowed to have a two-parameter family of periodic geodesics, such as a sphere would have.

The Weyl–Berry conjecture

For non-smooth boundaries, Michael Berry conjectured in 1979 that the correction should be of the order of

where D is the Hausdorff dimension of the boundary. This was disproved by J. Brossard and R. A. Carmona, who then suggested that one should replace the Hausdorff dimension with the upper box dimension. In the plane, this was proved if the boundary has dimension 1 (1993), but mostly disproved for higher dimensions (1996); both results are by Lapidus and Pomerance.

See also

Notes

  1. ^ Crowell, Rachel (2022-06-28), "Mathematicians Are Trying to 'Hear' Shapes—And Reach Higher Dimensions", Scientific American, retrieved 2022-11-15
  2. ^ "Can One Hear the Shape of a Drum? | Mathematical Association of America"
  3. ^ Kac, Mark (April 1966), "Can One Hear the Shape of a Drum?" (PDF), American Mathematical Monthly, 73 (4, part 2): 16, doi:10.2307/2313748, JSTOR 2313748
  4. ^ Buser et al. 1994.

References

Read other articles:

Urutan kronofotografi tahun 1878 oleh Eadweard Muybridge tentang seekor kuda yang sedang bergerak Kuda dapat menggunakan berbagai lagak (pola gerakan kaki) selama bergerak melintasi tanah padat, baik secara alami maupun sebagai hasil pelatihan khusus yang dilakukan manusia. [1] Penggolongan Berjalan (Walk) Berjalan adalah lagak empat ketukan yang rata-rata mencapai 7 kilometer per jam (4,3 mph) . Saat berjalan, kaki kuda mengikuti urutan berikut: kaki belakang kiri, kaki kiri dep...

 

British reality game show franchise This article is about the franchise. For other uses, see The Circle (disambiguation). The CircleThe international logo for The CircleOriginal workThe CircleFilms and televisionTelevision seriesThe Circle (independent international versions, see below)AudioOriginal musicThe Circle Theme[1][2]MiscellaneousFirst aired18 September 2018 (2018-09-18)Distributor Channel 4 Netflix Official websitehttps://www.thecirclecasting.com/ The ...

 

Municipality in Cavite, Philippines This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Maragondon – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) Municipality in Calabarzon, PhilippinesMaragondonMunicipalityMunicipality of MaragondonMunicipal pla...

People's Revolutionary Government of the Republic of China redirects here. For the government of the People's Republic of China, see Government of the People's Republic of China. For other uses, see Government of China (disambiguation). Anti-Kuomintang government in Fujian, China 1933-1934 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Fujian...

 

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 �...

 

Alessandro Crescenzi Informasi pribadiTanggal lahir 25 September 1991 (umur 32)Tempat lahir Roma, ItaliaTinggi 1,78 m (5 ft 10 in)Posisi bermain BekInformasi klubKlub saat ini Perugia (pinjaman dari Roma)Nomor 15Karier junior RomaKarier senior*Tahun Tim Tampil (Gol)2008– Roma 1 (0)2009–2010 → Grosseto (pinjaman) 6 (0)2010–2011 → Crotone (pinjaman) 33 (0)2011–2012 → Bari (pinjaman) 30 (0)2012 → Pescara (pinjaman) 1 (0)2013 → Novara (pinjaman) 20 (1)2013�...

NetherlandsFIBA zoneFIBA EuropeNational federationBasketball NederlandU20 European ChampionshipAppearances11Medals Bronze: 2 (2015, 2018)U20 European Championship Division BAppearances5Medals Gold: 1 (2009) Bronze: 1 (2023) The Netherlands women's national under-20 basketball team is a national basketball team of the Netherlands, administered by the Basketball Nederland.[1][2] It represents the country in women's international under-20 basketball competitions. FIBA U20 Women'...

 

Political party in Colombia This article is part of a series on thePolitics ofColombia Government Constitution of Colombia Law Taxation Policy Executive President Gustavo Petro (PH) Vice President Francia Márquez (PH) Cabinet of Colombia (Petro) Legislature Congress of Colombia Senate President of Senate Iván Name (AV) Chamber of Representatives President of the Chamber Andrés Calle (L) Judiciary Constitutional Court President of the Constitutional Court Cristina Pardo Supreme Court of Jui...

 

Chronologies Données clés 1799 1800 1801  1802  1803 1804 1805Décennies :1770 1780 1790  1800  1810 1820 1830Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

Edgar Mitchell Edgar Mitchell en 1971Información personalNombre de nacimiento Edgar Dean Mitchell Nombre en inglés Ed Mitchell Nacimiento 17 de septiembre de 1930 Hereford (Estados Unidos) Fallecimiento 4 de febrero de 2016 (85 años)West Palm Beach (Estados Unidos) Causa de muerte Cáncer de riñón Nacionalidad EstadounidenseEducaciónEducado en Escuela de Pilotos de Pruebas de la Fuerza Aérea de Estados UnidosAcademia Naval de los Estados UnidosArtesia High School (hasta 1948)Unive...

 

Dutch footballer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Vito Wormgoor – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this message) Vito Wormgoo...

 

Bay in Sydney Harbour, Sydney, New South Wales, Australia Blackwattle BayBlackwattle Bay Pontoon, GlebeBlackwattle BayLocationSydney Harbour, New South WalesCoordinates33°52′21″S 151°11′20″E / 33.872564°S 151.188912°E / -33.872564; 151.188912Part ofSydney HarbourPrimary outflowsJohnstons BayBasin countriesAustraliaSettlementsGlebe Blackwattle Bay is a bay located to the south–east of Glebe Island and east of Rozelle Bay on Sydney Harbour, in New...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (سبتمبر 2020) الدوري المصري الدرجة الرابعة تاريخ الإنشاء 1948 الرياضة كرة القدم البلد مصر القارة الكاف عدد الفرق 18 يتأهل...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها.جزء من سلسلة مقالات حولالنحو والتصريف في العربية الإعراب أقسام الكلام اسم فعل ح...

 

International conflict For the contemporary dispute, see Papua conflict. The disputed territory of West New Guinea The West New Guinea dispute (1950–1962), also known as the West Irian dispute, was a diplomatic and political conflict between the Netherlands and Indonesia over the territory of Dutch New Guinea. While the Netherlands had ceded sovereignty over most of the Dutch East Indies to Indonesia on 27 December 1949 following an independence struggle, it retained control over its colony...

American baseball player (1932–2023) Baseball player Ed BressoudBressoud with the Boston Red Sox in 1965ShortstopBorn: (1932-05-02)May 2, 1932Los Angeles, California, U.S.Died: July 13, 2023(2023-07-13) (aged 91)Walnut Creek, California, U.S.Batted: RightThrew: RightMLB debutJune 14, 1956, for the New York GiantsLast MLB appearanceSeptember 26, 1967, for the St. Louis CardinalsMLB statisticsBatting average.252Home runs94Runs batted in365 Teams New York / S...

 

For other people with similar names, see Latifur Rahman (disambiguation). Indian field hockey player Medal record Men's field hockey Olympic Games Representing  India 1948 London Team Representing  Pakistan 1956 Melbourne Team Latif-ur Rehman (1 January 1929 – 27 February 1987), also known as Latifur Rehman, was a field hockey player who competed internationally for India and Pakistan. He won a gold medal as a member of India's team at the 1948 Summer Olympics and a silver medal p...

 

Italian professional basketball player Giacomo DevecchiDevecchi with Dinamo in 2019No. 8 – Dinamo Basket SassariPositionSmall forward / shooting guardLeagueLBAPersonal informationBorn (1985-04-02) April 2, 1985 (age 39)Sant'Angelo Lodigiano, Lodi, ItalyNationalityItalianListed height1.96 m (6 ft 5 in)Listed weight88 kg (194 lb)Career informationPlaying career2001–presentCareer history2001–2004Olimpia Milano2004–2006Sutor Montegranaro2006–present...

Pour les articles homonymes, voir Makelele. Claude Makélélé Makélélé dans le staff du Paris Saint-Germain en 2013. Situation actuelle Équipe Asteras Tripolis (entraîneur) Biographie Nom Claude Makélélé Sinda Nationalité Congolaise Française (depuis 1992) Nat. sportive Française Naissance 18 février 1973 (51 ans) Kinshasa (Zaïre) Taille 1,74 m (5′ 9″) Période pro. 1992 – 2011 Poste Milieu défensif Pied fort Droit Parcours junior Années Club 1978-1989 US...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 2020 UEC European Track Championships – Women's madison – news · newspapers · books · scholar · JSTOR (November 2020) Women's madison at the 2020 UEC European Track ChampionshipsVenueKolodruma, PlovdivDate15 NovemberCompetitors16 from ...