Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce.[2][4] He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician.[5][6] After leaving sixth form, he studied mathematics at Gonville and Caius College, Cambridge.[4] A "terribly introverted adolescent" in school, he took his admission to Cambridge as an opportunity to transform himself into an extrovert, a change which would later earn him the nickname of "the world's most charismatic mathematician".[7][8]
Conway was awarded a BA in 1959 and, supervised by Harold Davenport, began to undertake research in number theory. Having solved the open problem posed by Davenport on writing numbers as the sums of fifth powers, Conway became interested in infinite ordinals.[6] It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos, where he became an avid backgammon player, spending hours playing the game in the common room.[2]
In 1964, Conway was awarded his doctorate and was appointed as College Fellow and Lecturer in Mathematics at Sidney Sussex College, Cambridge.[9]
After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University.[9] There, he won the Princeton University Pi Day pie-eating contest.[10]
Conway and Martin Gardner
Conway's career was intertwined with that of Martin Gardner. When Gardner featured Conway's Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity.[11][12] Gardner and Conway had first corresponded in the late 1950s, and over the years Gardner had frequently written about recreational aspects of Conway's work.[13] For instance, he discussed Conway's game of Sprouts (July 1967), Hackenbush (January 1972), and his angel and devil problem (February 1974). In the September 1976 column, he reviewed Conway's book On Numbers and Games and even managed to explain Conway's surreal numbers.[14]
Conway was a prominent member of Martin Gardner's Mathematical Grapevine. He regularly visited Gardner and often wrote him long letters summarizing his recreational research. In a 1976 visit, Gardner kept him for a week, pumping him for information on the Penrose tilings which had just been announced. Conway had discovered many (if not most) of the major properties of the tilings.[15] Gardner used these results when he introduced the world to Penrose tiles in his January 1977 column.[16] The cover of that issue of Scientific American features the Penrose tiles and is based on a sketch by Conway.[12]
Personal life and death
Conway was married three times. With his first two wives he had two sons and four daughters. He married Diana in 2001 and had another son with her.[17] He had three grandchildren and two great-grandchildren.[2]
Conway invented the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, long before personal computers existed. Since Conway's game was popularized by Martin Gardner in Scientific American in 1970,[23] it has spawned hundreds of computer programs, web sites, and articles.[24] It is a staple of recreational mathematics. There is an extensive wiki devoted to curating and cataloging the various aspects of the game.[25] From the earliest days, it has been a favorite in computer labs, both for its theoretical interest and as a practical exercise in programming and data display. Conway came to dislike how discussions of him heavily focused on his Game of Life, feeling that it overshadowed deeper and more important things he had done, although he remained proud of his work on it.[26] The game helped to launch a new branch of mathematics, the field of cellular automata.[27]
The Game of Life is known to be Turing complete.[28][29]
He invented a new system of numbers, the surreal numbers, which are closely related to certain games and have been the subject of a mathematical novelette by Donald Knuth.[30] He also invented a nomenclature for exceedingly large numbers, the Conway chained arrow notation. Much of this is discussed in the 0th part of ONAG.
In the theory of tessellations, he devised the Conway criterion which is a fast way to identify many prototiles that tile the plane.[32]
He investigated lattices in higher dimensions and was the first to determine the symmetry group of the Leech lattice.
Geometric topology
In knot theory, Conway formulated a new variation of the Alexander polynomial and produced a new invariant now called the Conway polynomial.[33] After lying dormant for more than a decade, this concept became central to work in the 1980s on the novel knot polynomials.[34] Conway further developed tangle theory and invented a system of notation for tabulating knots, now known as Conway notation, while correcting a number of errors in the 19th-century knot tables and extending them to include all but four of the non-alternating primes with 11 crossings.[35] The Conway knot is named after him.
Conway's conjecture that, in any thrackle, the number of edges is at most equal to the number of vertices, is still open.
As a graduate student, he proved one case of a conjecture by Edward Waring, that every integer could be written as the sum of 37 numbers each raised to the fifth power, though Chen Jingrun solved the problem independently before Conway's work could be published.[38] In 1972, Conway proved that a natural generalization of the Collatz problem is algorithmically undecidable. Related to that, he developed the esoteric programming language FRACTRAN. While lecturing on the Collatz conjecture, Terence Tao (who was taught by him in graduate school) mentioned Conway's result and said that he was "always very good at making extremely weird connections in mathematics".[39]
For calculating the day of the week, he invented the Doomsday algorithm. The algorithm is simple enough for anyone with basic arithmetic ability to do the calculations mentally. Conway could usually give the correct answer in under two seconds. To improve his speed, he practised his calendrical calculations on his computer, which was programmed to quiz him with random dates every time he logged on. One of his early books was on finite-state machines.
Theoretical physics
In 2004, Conway and Simon B. Kochen, another Princeton mathematician, proved the free will theorem, a version of the "no hidden variables" principle of quantum mechanics. It states that given certain conditions, if an experimenter can freely decide what quantities to measure in a particular experiment, then elementary particles must be free to choose their spins to make the measurements consistent with physical law. Conway said that "if experimenters have free will, then so do elementary particles."[42]
A versatile mathematician who combines a deep combinatorial insight with algebraic virtuosity, particularly in the construction and manipulation of "off-beat" algebraic structures which illuminate a wide variety of problems in completely unexpected ways. He has made distinguished contributions to the theory of finite groups, to the theory of knots, to mathematical logic (both set theory and automata theory) and to the theory of games (as also to its practice).[44]
Conferences called Gathering 4 Gardner are held every two years to celebrate the legacy of Martin Gardner, and Conway himself was often a featured speaker at these events, discussing various aspects of recreational mathematics.[49][50]
^ ab"CONWAY, Prof. John Horton". Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014; online edn, Oxford University Press.(subscription required)
^"John Horton Conway". Dean of the Faculty, Princeton University. Archived from the original on 16 March 2019. Retrieved 3 November 2020.
^Gardner, Martin (1989) Penrose Tiles to Trapdoor Ciphers, W. H. Freeman & Co., ISBN0-7167-1987-8, Chapter 4. A non-technical overview; reprint of the 1976 Scientific American article.
^MacTutor History: The game made Conway instantly famous, but it also opened up a whole new field of mathematical research, the field of cellular automata.
^Case, James (1 April 2014). "Martin Gardner's Mathematical Grapevine". SIAM NEWS. Book reviews of Gardner, Martin, 2013 Undiluted Hocus-Pocus: The Autobiography of Martin Gardner. Princeton University Press and Henle, Michael; Hopkins, Brian (edts.) 2012 Martin Gardner in the Twenty-First Century. MAA Publications.
The Princeton Brick (2014) on YouTube Conway leading a tour of brickwork patterns in Princeton, lecturing on the ordinals and on sums of powers and the Bernoulli numbers