Dirichlet eigenvalue

In mathematics, the Dirichlet eigenvalues are the fundamental modes of vibration of an idealized drum with a given shape. The problem of whether one can hear the shape of a drum is: given the Dirichlet eigenvalues, what features of the shape of the drum can one deduce. Here a "drum" is thought of as an elastic membrane Ω, which is represented as a planar domain whose boundary is fixed. The Dirichlet eigenvalues are found by solving the following problem for an unknown function u ≠ 0 and eigenvalue λ

(1)

Here Δ is the Laplacian, which is given in xy-coordinates by

The boundary value problem (1) is the Dirichlet problem for the Helmholtz equation, and so λ is known as a Dirichlet eigenvalue for Ω. Dirichlet eigenvalues are contrasted with Neumann eigenvalues: eigenvalues for the corresponding Neumann problem. The Laplace operator Δ appearing in (1) is often known as the Dirichlet Laplacian when it is considered as accepting only functions u satisfying the Dirichlet boundary condition. More generally, in spectral geometry one considers (1) on a manifold with boundary Ω. Then Δ is taken to be the Laplace–Beltrami operator, also with Dirichlet boundary conditions.

It can be shown, using the spectral theorem for compact self-adjoint operators that the eigenspaces are finite-dimensional and that the Dirichlet eigenvalues λ are real, positive, and have no limit point. Thus they can be arranged in increasing order:

where each eigenvalue is counted according to its geometric multiplicity. The eigenspaces are orthogonal in the space of square-integrable functions, and consist of smooth functions. In fact, the Dirichlet Laplacian has a continuous extension to an operator from the Sobolev space into . This operator is invertible, and its inverse is compact and self-adjoint so that the usual spectral theorem can be applied to obtain the eigenspaces of Δ and the reciprocals 1/λ of its eigenvalues.

One of the primary tools in the study of the Dirichlet eigenvalues is the max-min principle: the first eigenvalue λ1 minimizes the Dirichlet energy. To wit,

the infimum is taken over all u of compact support that do not vanish identically in Ω. By a density argument, this infimum agrees with that taken over nonzero . Moreover, using results from the calculus of variations analogous to the Lax–Milgram theorem, one can show that a minimizer exists in . More generally, one has

where the supremum is taken over all (k−1)-tuples and the infimum over all u orthogonal to the .

Applications

Fig.1. Spiral-shaped boundary of the domain (blue), its chunk (red), and 3 segments of a ray (green).

The Dirichlet Laplacian may arise from various problems of mathematical physics; it may refer to modes of at idealized drum, small waves at the surface of an idealized pool, as well as to a mode of an idealized optical fiber in the paraxial approximation. The last application is most practical in connection to the double-clad fibers; in such fibers, it is important, that most of modes of the fill the domain uniformly, or the most of rays cross the core. The poorest shape seems to be the circularly-symmetric domain[1][2] ,.[3] The modes of pump should not avoid the active core used in double-clad fiber amplifiers. The spiral-shaped domain happens to be especially efficient for such an application due to the boundary behavior of modes of Dirichlet laplacian.[4]

The theorem about boundary behavior of the Dirichlet Laplacian if analogy of the property of rays in geometrical optics (Fig.1); the angular momentum of a ray (green) increases at each reflection from the spiral part of the boundary (blue), until the ray hits the chunk (red); all rays (except those parallel to the optical axis) unavoidly visit the region in vicinity of the chunk to frop the excess of the angular momentum. Similarly, all the modes of the Dirichlet Laplacian have non-zero values in vicinity of the chunk. The normal component of the derivative of the mode at the boundary can be interpreted as pressure; the pressure integrated over the surface gives the force. As the mode is steady-state solution of the propagation equation (with trivial dependence of the longitudinal coordinate), the total force should be zero. Similarly, the angular momentum of the force of pressure should be also zero. However, there exists a formal proof, which does not refer to the analogy with the physical system.[4]

See also

Notes

  1. ^ S. Bedo; W. Luthy; H. P. Weber (1993). "The effective absorption coefficient in double-clad fibers". Optics Communications. 99 (5–6): 331–335. Bibcode:1993OptCo..99..331B. doi:10.1016/0030-4018(93)90338-6.
  2. ^ Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump". Optical Fiber Technology. 7 (4): 324–339. Bibcode:2001OptFT...7..324L. doi:10.1006/ofte.2001.0361.
  3. ^ A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers". Optics Communications. 132 (5–6): 511–518. Bibcode:1996OptCo.132..511A. doi:10.1016/0030-4018(96)00368-9.
  4. ^ a b Kouznetsov, D.; Moloney, J.V. (2004). "Boundary behavior of modes of Dirichlet laplacian" (PDF). Journal of Modern Optics. 51 (13): 1955–1962. Bibcode:2004JMOp...51.1955K. doi:10.1080/09500340408232504. S2CID 209833904.

References

Read other articles:

Yahoo!Sebelumnya Oath Inc. (2017–2019) Verizon Media (2019–2021) JenisSwastaIndustriInternetTeknologiPendahuluYahoo! Inc. (1995–2017)Didirikan 13 Juni 2017; 6 tahun lalu (2017-06-13) (sebagai Oath) 1 September 2021; 2 tahun lalu (2021-09-01) (sebagai Yahoo!) KantorpusatNew York City, New York, A.S.Wilayah operasiSeluruh duniaTokohkunciJim Lanzone (CEO)Merek AOL Yahoo! TechCrunch Engadget Built by Girls Rivals JasaMedia digital Perangkat LunakPeriklananLayanan internetPendapata...

 

Logo MNC Pictures Berikut ini adalah daftar produksi MNC Pictures. Film Tahun Judul Sutradara Ko-Produksi Catatan Ref. 2000-an 2004 Issue Gunawan Paggaru 2005 Vina Bilang Cinta Indra Yudhistira 2009 Asmara Dua Diana Awi Suryadi 2010-an 2010 Hari untuk Amanda Angga Dwimas Sasongko 2014 7/24 Fajar Nugros 2015 Di Balik 98 Lukman Sardi 3 Dara Ardy Octaviand Skakmat Ody Harahap 2016 Surat Cinta untuk Kartini Azhar Kinoi Lubis 1 Cinta di Bira Arnandha Wyantodan Me vs Mami Ody Harahap The Professio...

 

Stokely CarmichaelStokely Carmichael pada 1960 Kepala Komite Kerja Sama Non-Kekerasan Pelajar ke-4Masa jabatanMei 1966 – Juni 1967 PendahuluJohn LewisPenggantiH. Rap Brown Informasi pribadiLahirStokely Carmichael(1941-06-29)29 Juni 1941Port of Spain, Trinidad dan TobagoMeninggal15 November 1998(1998-11-15) (umur 57)Conakry, GuineaSuami/istriMiriam MakebaAnak2PendidikanThe Bronx High School of Science (1960)Alma materHoward University(B.A., Filsafat, 1964)Sunting kotak info...

العلاقات البوليفية المولدوفية بوليفيا مولدوفا   بوليفيا   مولدوفا تعديل مصدري - تعديل   العلاقات البوليفية المولدوفية هي العلاقات الثنائية التي تجمع بين بوليفيا ومولدوفا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: I dengan akut Kiril – berita · surat kabar · buku · cendekiawan · JSTOR (Mei 2022) Huruf KirilI dengan akut Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ...

 

Processes which grow and shape an organism's nervous tissue over its lifetime This article is about neural development in all types of animals, including humans. For information specific to the human nervous system, see Development of the nervous system in humans. For formation and stabilization of synapses during development, see Synaptic stabilization. Developmental Neuroscience redirects here. For the journal, see Developmental Neuroscience (journal). Neural Development redirects here. For...

Sossusvlei Pelafalan Sossusvlei Sossusvlei (kadang ditulis Sossus Vlei) adalah sebuah dataran garam dan dataran liat[1] yang dikelilingi oleh bukit merah yang tinggi, yang terletak di bagian selatan Gurun Namib, di Taman Nasional Namib-Naukluft, Namibia. Nama Sossusvlei sering digunakan dalam arti luas untuk merujuk ke daerah sekitarnya (termasuk tetangga vlei seperti Deadvlei dan bukit tinggi lainnya), yang merupakan salah satu objek wisata utama Namibia.[2] Nama Sossusvlei a...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Вероисповедание во Франции (2021) Христианство    28.6 % Иудаизм    2.8 % Ислам    7 % Другая религия    2.5 % Неверующие    55.2 % Собор Парижской Богоматери Содержание 1 Светская республика 2 Религиозная принадлежность французов 2.1 Социологичес...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

  هذه المقالة عن مدينة ضرما. لمحافظة ضرما، طالع محافظة ضرما. ضرما الاسم الرسمي ضرما[1]    الإحداثيات 24°37′02″N 46°13′32″E / 24.617261°N 46.2255788°E / 24.617261; 46.2255788   تقسيم إداري  البلد السعودية  التقسيم الأعلى محافظة ضرما  عاصمة لـ محافظة ضرما  عدد الس�...

Utuloa is a village on the island of Savai'i in Samoa. It is situated at the northwestern end of the island in the district of Vaisigano and the electoral district of Vaisigano 1.[1] The population is 20.[2] References ^ Electoral Constituencies Act 2019 (PDF). Parliament of Samoa. 31 January 2019. Retrieved 11 September 2021. ^ Census 2016 Preliminary count (PDF). Samoa Bureau of Statistics. 2016. Retrieved 23 August 2021. vte Vaisigano District: ItūmālōTraditional center:...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين...

 

Face DownLagu oleh Arashidari album PopcornDirilis29 Mei 2012 (2012-05-29)FormatCD, CD + DVDDirekam2012GenrePopLabelJ StormKronologi singel Wild at Heart (2012) Face Down (2012) Your Eyes (2012) Face Down adalah single ke-38 boyband Jepang Arashi. Single ini dirilis pada tanggal 29 Mei 2012 oleh label rekaman mereka J Storm. Face Down digunakan sebagai lagu tema drama Kagi no Kakatta Heya yang dibintangi oleh salah satu member Arashi Satoshi Ohno. Informasi single Single ini dirilis dala...

Pijnacker-NootdorpMunisipalitas BenderaLambang kebesaranNegaraBelandaProvinsiHolland SelatanLuas(2006) • Total38,60 km2 (1,490 sq mi) • Luas daratan37,65 km2 (1,454 sq mi) • Luas perairan0,95 km2 (37 sq mi)Populasi (1 January, 2010) • Total47.891 • Kepadatan1.275/km2 (3,300/sq mi) Source: CBS, Statline.Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Situs we...

 

Cette page contient des caractères thaïs. En cas de problème, consultez Aide:Unicode ou testez votre navigateur. BahtUnité monétaire actuelle Pays officiellementutilisateurs Thaïlande Banque centrale Bank of Thailand Appellation locale บาท (baht) Symbole local ฿ Code ISO 4217 THB Sous-unité 100 สตางค์ (satangs) Taux de change 1 EUR ≈ 39.20  THB [1] (mars 2019) 1 USD ≈ 31,813 THB [2] (mars 2019) modifier  Le baht est l'unité monétaire ...

 

Transvaal political party Map of the results of the 1907 Transvaal election, which saw Het volk candidates win a majority of seats. Het Volk (The People) was a Transvaal political party, established in May 1904[1]: 53  under the leadership of Louis Botha and his deputy Jan Smuts. Upon the creation of the Union of South Africa in May 1910, it merged with Afrikaner Bond, the South African Party, and the Orangia Unie, the dominant political parties of the Cape Colony and ...

1935 United Kingdom general election ← 1931 14 November 1935 1945 → ← outgoing memberselected members →All 615 seats in the House of Commons308 seats needed for a majorityTurnout71.1% (5.3 pp)   First party Second party Third party   Leader Stanley Baldwin Clement Attlee John Simon Party Conservative Labour National Liberal Alliance National Government National Government Leader since 23 May 1923 25 October 1935 5 October 1931 Leader...

 

The collection 1-3 John in the New Testament. Part of a series of articles onJohn in the BibleSaint John the Evangelist, Domenichino Johannine literature Gospel Epistles First Second Third Revelation Events Authorship Apostle Beloved disciple Evangelist Patmos Presbyter Related literature Apocryphon Acts Signs Gospel See also Johannine community Logos Holy Spirit in Johannine literature John's vision of the Son of Man New Testament people named John vte13th-century manuscript of the Vulgate, ...