Conjugate hyperbola

A hyperbola and its conjugate hyperbola

In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola.

A hyperbola and its conjugate may be constructed as conic sections derived from parallel intersecting planes and cutting tangent double cones sharing the same apex.

Using analytic geometry, the hyperbolas satisfy the symmetric equations

with vertices (a,0) and (–a,0), and
with vertices (0,b) and (0,–b).

In case a = b they are rectangular hyperbolas, and a reflection of the plane in an asymptote exchanges the conjugates.

History

Light cone and conjugate hyperbolas in Minkowski (1908)

Apollonius of Perga introduced the conjugate hyperbola through a geometric construction: "Given two straight lines bisecting one another at any angle, to describe two hyperbolas each with two branches such that the straight lines are conjugate diameters of both hyperbolas."[1] "The two hyperbolas so constructed are called conjugate hyperbolas, and [the] last drawn is the hyperbola conjugate to the first."

The following property was described by Apollonius: let PP', DD' be conjugate diameters of two conjugate hyperbolas, Draw the tangents at P, P', D, D'. Then ... the tangents form a parallelogram, and the diagonals of it, LM, L'M', pass through the center [C]. Also PL = PL' = P'M = P'M' = CD.[1] It is noted that the diagonals of the parallelogram are the asymptotes common to both hyperbolas. Either PP' or DD' is a transverse diameter, with the opposite one being the conjugate diameter.

Elements of Dynamic (1878) by W. K. Clifford identifies the conjugate hyperbola.[2]

In 1894 Alexander Macfarlane used an illustration of conjugate right hyperbolas in his study "Principles of elliptic and hyperbolic analysis".[3]

In 1895 W. H. Besant noted conjugate hyperbolas in his book on conic sections.[4] George Salmon illustrated a conjugate hyperbola as a dotted curve in this Treatise on Conic Sections (1900).[5]

In 1908 conjugate hyperbolas were used by Hermann Minkowski to demarcate units of duration and distance in a spacetime diagram illustrating a plane in his Minkowski space.[6]

The principle of relativity may be stated as "Any pair of conjugate diameters of conjugate hyperbolas can be taken for the axes of space and time".[7]

In 1957 Barry Spain illustrated conjugate rectangular hyperbolas.[8]

References

  1. ^ a b Thomas Heath (1896) Apollonius of Perga: Treatise on Conic Sections, pages 47, 48, 54
  2. ^ W. K. Clifford (1878) Elements of Dynamic, page 90, via Internet Archive
  3. ^ Alexander Macfarlane (1894) Principles of Space Analysis via Internet Archive
  4. ^ W. H. Besant (1895) Conic Sections Treated Geometrically, page 25 via HathiTrust
  5. ^ George Salmon (1900) A Treatise on Conic Sections via Internet Archive
  6. ^ Minkowski, Hermann (1907–1908), "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern"  [The Fundamental Equations for Electromagnetic Processes in Moving Bodies], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111
  7. ^ Whittaker, E.T. (1910). A History of the Theories of Aether and Electricity (1 ed.). Dublin: Longman, Green and Co. p. 441.
  8. ^ Barry Spain (1957) Analytical Conics via HathiTrust

Read other articles:

American game show Trust Me, I'm a Game Show HostGenreGame showCreated by Mark Burnett David Granger Will Macdonald Presented by D. L. Hughley Michael Ian Black Country of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes10ProductionExecutive producers Mark Burnett Barry Poznick David Granger Will Macdonald Production companiesOne Three MediaMonkey KingdomOriginal releaseNetworkTBSReleaseOctober 22 (2013-10-22) –December 17, 2013 (2013-12-17) Trust Me,...

School district in Bergen County, New Jersey, United States Palisades Park Public School DistrictAddress270 First Street Palisades Park, Bergen County, New Jersey, 07650United StatesCoordinates40°50′50″N 73°59′50″W / 40.847295°N 73.9971°W / 40.847295; -73.9971District informationGradesPreK-12SuperintendentDr. Joseph CirilloBusiness administratorAngela SpasevskiSchools3Students and staffEnrollment1,846 (as of 2019–20)[1]Faculty95.7 FTEs[1]S...

Potensial aksi adalah aliran ionik positif dan negatif yang bergerak di membran sel. Langkah awal pengolahan informasi indra adalah transformasi energi stimulus menjadi potensial reseptor, lalu menjadi potensial aksi pada serabut saraf. Pola potensial aksi merupakan kode informasi mengenai dunia, walaupun kadang-kadang kode yang disampaikan berbeda dari yang akan disampaikan. Potensial aksi ada pada tiap hewan. Pranala luar Electrochemistry of plant life Diarsipkan 2006-10-08 di Wayback Machi...

Quartet of fantasy novels by Robin Hobb Rain Wild ChroniclesUK editionDragon KeeperDragon HavenCity of DragonsBlood of DragonsAuthorRobin HobbCover artistJackie MorrisCountryUnited KingdomLanguageEnglishGenreFantasyPublisherVoyager (UK)Published2009–13Preceded byTawny Man trilogy Followed byFitz and the Fool trilogy The Rain Wild Chronicles is a quartet of fantasy novels by American author Robin Hobb, published from 2009 to 2013. It chronicles the re-emergence of dragons in the Rain Wilds, ...

Renault Mégane Renault Megane logo Merk Renault Frankrijk Type Mégane Productiejaren Mk I: 1995 - 2002Mk II: 2002 - 20092006 - heden (Brazilië)Mk III: 2008 - 2016Mk IV: 2015 - heden Productieaantal > 9.200.000 Voorganger Renault 19 Opvolger n.v.t. Concurrenten Alfa Romeo 145 / 146 / 147 / GiuliettaCitroën Xsara / C4Fiat Bravo/Brava / Stilo / BravoFord Escort / FocusOpel AstraPeugeot 306 / 307 / 308Volkswagen Golf Platform CMF-C/D Portaal    Auto Dit artikel betreft de Re...

Kirchenkreis Regensburg Dreinigkeitskirche RegensburgPredigtkirche der Regionalbischöfe Organisation Landeskirche Evang.-Luth. Kirche in Bayern Statistik Dekanatsbezirke 8 Kirchengemeinden 149 Gemeindeglieder 300.000 Leitung Regionalbischof Klaus Stiegler Büroanschrift Liskircher Straße 1793049 Regensburg Webpräsenz www.kirchenkreis-regensburg.de Der evangelische Kirchenkreis Regensburg ist einer der sechs Kirchenkreise der Evangelisch-Lutherischen Kirche in Bayern. Er umfasst das Gebiet ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) ملعب مدينة ريتشموندمعلومات عامةالمنطقة الإدارية فرجينيا البلد  الولايات المتحدة الاستعمالالمستضيف Richmond Spiders (en) ريتشموند كيكرز المالك ريتشموندمعلومات أ

United Kingdom-based charity This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (July 2023) (Learn how and when to remove this template message) Prince's TrustFormation1976; 47 years ago (1976)FounderCharles IIITypeCharityPurposeThe development and improvement of young peopleLocationLondon, SE1Unit...

Teletipos en la 2ª Guerra Mundial. Un Teletype Model 33 Un teletipo (del francés Télétype™),[1]​ TTY (acrónimo de la forma inglesa teletype) o télex (del inglés telex)[2]​ es un dispositivo telegráfico de transmisión de datos, ya obsoleto, utilizado durante el siglo XX para enviar y recibir mensajes mecanografiados punto a punto a través de un canal de comunicación simple, a menudo un par de cables de telégrafo. Las formas más modernas del equipo se fabricaron ...

「NHKプラスクロスSHIBUYA」あるいはNHK受信料とは別料金のサービス「NHKオンデマンド」とは異なります。 日本放送協会 > NHKプラス プロジェクト‐ノート:放送または配信の番組#日本国内のバラエティ・情報・報道番組などの記事の放送リスト・ネット局の記述添削(テレビアニメ・ドラマは除く)による改訂案に、このページに関する提案があります。(2023年12月�...

In this Chinese name, the family name is Zhang. Zhang Youyi (Chang Yu-i)Zhang Youyi and Xu ZhimoBorn1900Shanghai, ChinaDied1988 (aged 87–88)New York City, United StatesOccupation(s)Banker, educatorSpouse(s)Xu ZhimoSu Jizhi (m.1954 wid.1972)ChildrenHsu Chi-kai (b. 1918)Peter Hsu De-sheng (1922-1925)RelativesNatasha Chang Pang-mei (grand niece) Zhang Youyi (Chinese: 張幼儀; Wade–Giles: Chang Yu-i; 1900–1988)[1] was a Chinese educator, banker, and the first wife...

Zoo in Sabae, Japan Nishiyama ZooA red panda35°57′02″N 136°10′51″E / 35.9506°N 136.1809°E / 35.9506; 136.1809Date openedApr. 1985Location3-8-9, Sakura-machi, Sabae, Fukui, Japan (福井県鯖江市桜町3丁目8番9号)No. of animals58 (2018)[1]No. of species12 (2018)[1]MembershipsJAZA[2]Major exhibitsRed pandas, small primates, birdsPublic transit accessFukui Railway's Nishi-Sabae or Nishiyama-Kōen StationsWebsitewww.city.sabae.fuk...

Vidhan Sabha constituencyMurshidabadConstituency No. 64 for the West Bengal Legislative AssemblyInteractive Map Outlining Murshidabad Assembly ConstituencyConstituency detailsCountryIndiaRegionEast IndiaStateWest BengalDistrictMurshidabadLS constituencyMurshidabadEstablished1952Total electors268,221ReservationNoneMember of Legislative Assembly17th West Bengal Legislative AssemblyIncumbent Gouri Shankar Ghosh PartyBharatiya Janata PartyElected year2021 Murshidabad Assembly constituency is an a...

2007 studio album by CallaStrength in NumbersStudio album by CallaReleasedFebruary 20, 2007GenreIndie rockLength52:48LabelBeggars Banquet RecordsCalla chronology Collisions(2005) Strength in Numbers(2007) Professional ratingsReview scoresSourceRatingAllmusic linkIndiecisionB+ link Strength in Numbers, is the fifth album from New York-based Calla. Track listing Sanctify – 4:39 Defences Down – 4:30 Sylvia's Song – 3:55 Sleep in Splendor – 5:22 Rise – 3:58 Stand Paralyzed – 3...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2017) النقل السككي في السويد يتكون من شبكة بطول 13,000 كم، وتعتبر ال21 كتصنيف في العالم.[1] تم بناء أول خط سككي في السويد عام 1855. السويد عضو في الاتحاد الدو�...

Chemical compound FebarbamateClinical dataOther namesMS-543ATC codeM03BA05 (WHO) Identifiers IUPAC name [1-butoxy-3-(5-ethyl-2,4,6-trioxo-5-phenyl-1,3-diazinan-1-yl)propan-2-yl] carbamate CAS Number13246-02-1 YPubChem CID25803ChemSpider24039 YUNII5Z48ONN38PKEGGD07275 YChEMBLChEMBL2104283 NECHA InfoCard100.032.919 Chemical and physical dataFormulaC20H27N3O6Molar mass405.451 g·mol−13D model (JSmol)Interactive image SMILES C1(=O)NC(C(C(=O)N1CC(OC(=O)N)COCCCC...

British television series For other uses, see Bighead. This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: use episode table, remove individual contestant names, ages, occupations. combine ratings into episode table. Please help improve this article if you can. (January 2018) (Learn how and when to remove this template message) BigheadsGenreGame showDirected byRichard van't RietPresented byJason ManfordStarring Jenny Powell Kriss Akabusi Theme musi...

American college football season 2020 Florida Gators footballSEC Eastern Division championSEC Championship Game, L 46–52 vs. AlabamaCotton Bowl Classic, L 20–55 vs. OklahomaConferenceSoutheastern ConferenceDivisionEastern DivisionRankingCoachesNo. 12APNo. 13Record8–4 (8–2 SEC)Head coachDan Mullen (3rd season)Offensive coordinatorBrian Johnson (1st season)Offensive schemeSpreadDefensive coordinatorTodd Grantham (3rd season)Base defense3–4Home s...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) سيرج كولبيرت معلومات شخصية الميلاد 16 يونيو 1967 (57 سنة)  شاطئ نيوبورت  مواطنة الولايات المتحدة  الحياة العملية المهنة ملحن،  ومؤلف موسيقى تصويرية  ...

William Somerset Maugham (1934) William Somerset Maugham (lahir di Paris, 25 Januari 1874, meninggal di Cap Ferrat, 16 Desember 1965) adalah seorang penulis sandiwara, roman, dan cerita pendek yang berasal dari Inggris. [1] Walaupun ia lahir di Paris, W. Somerset Maugham sebenarnya merupakan keturunan Irlandia.[2] Ia berbicara dengan gagap.[2] Dalam studinya, ia menerima pendidikan sekolah umum klasik di London.[2] Kemudian ia belajar filsafat dan sastra di Uni...