Dual norm

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

Definition

Let be a normed vector space with norm and let denote its continuous dual space. The dual norm of a continuous linear functional belonging to is the non-negative real number defined[1] by any of the following equivalent formulas: where and denote the supremum and infimum, respectively. The constant map is the origin of the vector space and it always has norm If then the only linear functional on is the constant map and moreover, the sets in the last two rows will both be empty and consequently, their supremums will equal instead of the correct value of

Importantly, a linear function is not, in general, guaranteed to achieve its norm on the closed unit ball meaning that there might not exist any vector of norm such that (if such a vector does exist and if then would necessarily have unit norm ). R.C. James proved James's theorem in 1964, which states that a Banach space is reflexive if and only if every bounded linear function achieves its norm on the closed unit ball.[2] It follows, in particular, that every non-reflexive Banach space has some bounded linear functional that does not achieve its norm on the closed unit ball. However, the Bishop–Phelps theorem guarantees that the set of bounded linear functionals that achieve their norm on the unit sphere of a Banach space is a norm-dense subset of the continuous dual space.[3][4]

The map defines a norm on (See Theorems 1 and 2 below.) The dual norm is a special case of the operator norm defined for each (bounded) linear map between normed vector spaces. Since the ground field of ( or ) is complete, is a Banach space. The topology on induced by turns out to be stronger than the weak-* topology on

The double dual of a normed linear space

The double dual (or second dual) of is the dual of the normed vector space . There is a natural map . Indeed, for each in define

The map is linear, injective, and distance preserving.[5] In particular, if is complete (i.e. a Banach space), then is an isometry onto a closed subspace of .[6]

In general, the map is not surjective. For example, if is the Banach space consisting of bounded functions on the real line with the supremum norm, then the map is not surjective. (See space). If is surjective, then is said to be a reflexive Banach space. If then the space is a reflexive Banach space.

Examples

Dual norm for matrices

The Frobenius norm defined by is self-dual, i.e., its dual norm is

The spectral norm, a special case of the induced norm when , is defined by the maximum singular values of a matrix, that is, has the nuclear norm as its dual norm, which is defined by for any matrix where denote the singular values[citation needed].

If the Schatten -norm on matrices is dual to the Schatten -norm.

Finite-dimensional spaces

Let be a norm on The associated dual norm, denoted is defined as

(This can be shown to be a norm.) The dual norm can be interpreted as the operator norm of interpreted as a matrix, with the norm on , and the absolute value on :

From the definition of dual norm we have the inequality which holds for all and [7] The dual of the dual norm is the original norm: we have for all (This need not hold in infinite-dimensional vector spaces.)

The dual of the Euclidean norm is the Euclidean norm, since

(This follows from the Cauchy–Schwarz inequality; for nonzero the value of that maximises over is )

The dual of the -norm is the -norm: and the dual of the -norm is the -norm.

More generally, Hölder's inequality shows that the dual of the -norm is the -norm, where satisfies that is,

As another example, consider the - or spectral norm on . The associated dual norm is which turns out to be the sum of the singular values, where This norm is sometimes called the nuclear norm.[8]

Lp and ℓp spaces

For p-norm (also called -norm) of vector is

If satisfy then the and norms are dual to each other and the same is true of the and norms, where is some measure space. In particular the Euclidean norm is self-dual since For , the dual norm is with positive definite.

For the -norm is even induced by a canonical inner product meaning that for all vectors This inner product can expressed in terms of the norm by using the polarization identity. On this is the Euclidean inner product defined by while for the space associated with a measure space which consists of all square-integrable functions, this inner product is The norms of the continuous dual spaces of and satisfy the polarization identity, and so these dual norms can be used to define inner products. With this inner product, this dual space is also a Hilbert spaces.

Properties

Given normed vector spaces and let [9] be the collection of all bounded linear mappings (or operators) of into Then can be given a canonical norm.

Theorem 1 — Let and be normed spaces. Assigning to each continuous linear operator the scalar defines a norm on that makes into a normed space. Moreover, if is a Banach space then so is [10]

Proof

A subset of a normed space is bounded if and only if it lies in some multiple of the unit sphere; thus for every if is a scalar, then so that

The triangle inequality in shows that

for every satisfying This fact together with the definition of implies the triangle inequality:

Since is a non-empty set of non-negative real numbers, is a non-negative real number. If then for some which implies that and consequently This shows that is a normed space.[11]

Assume now that is complete and we will show that is complete. Let be a Cauchy sequence in so by definition as This fact together with the relation

implies that is a Cauchy sequence in for every It follows that for every the limit exists in and so we will denote this (necessarily unique) limit by that is:

It can be shown that is linear. If , then for all sufficiently large integers n and m. It follows that for sufficiently all large Hence so that and This shows that in the norm topology of This establishes the completeness of [12]

When is a scalar field (i.e. or ) so that is the dual space of

Theorem 2 — Let be a normed space and for every let where by definition is a scalar. Then

  1. is a norm that makes a Banach space.[13]
  2. If is the closed unit ball of then for every Consequently, is a bounded linear functional on with norm
  3. is weak*-compact.
Proof

Let denote the closed unit ball of a normed space When is the scalar field then so part (a) is a corollary of Theorem 1. Fix There exists[14] such that but, for every . (b) follows from the above. Since the open unit ball of is dense in , the definition of shows that if and only if for every . The proof for (c)[15] now follows directly.[16]

As usual, let denote the canonical metric induced by the norm on and denote the distance from a point to the subset by If is a bounded linear functional on a normed space then for every vector [17] where denotes the kernel of

See also

Notes

  1. ^ Rudin 1991, p. 87
  2. ^ Diestel 1984, p. 6.
  3. ^ Bishop, Errett; Phelps, R. R. (1961). "A proof that every Banach space is subreflexive". Bulletin of the American Mathematical Society. 67: 97–98. doi:10.1090/s0002-9904-1961-10514-4. MR 0123174.
  4. ^ Lomonosov, Victor (2000). "A counterexample to the Bishop-Phelps theorem in complex spaces". Israel Journal of Mathematics. 115: 25–28. doi:10.1007/bf02810578. MR 1749671. S2CID 53646715.
  5. ^ Rudin 1991, section 4.5, p. 95
  6. ^ Rudin 1991, p. 95
  7. ^ This inequality is tight, in the following sense: for any there is a for which the inequality holds with equality. (Similarly, for any there is an that gives equality.)
  8. ^ Boyd & Vandenberghe 2004, p. 637
  9. ^ Each is a vector space, with the usual definitions of addition and scalar multiplication of functions; this only depends on the vector space structure of , not .
  10. ^ Rudin 1991, p. 92
  11. ^ Rudin 1991, p. 93
  12. ^ Rudin 1991, p. 93
  13. ^ Aliprantis & Border 2006, p. 230
  14. ^ Rudin 1991, Theorem 3.3 Corollary, p. 59
  15. ^ Rudin 1991, Theorem 3.15 The Banach–Alaoglu theorem algorithm, p. 68
  16. ^ Rudin 1991, p. 94
  17. ^ Hashimoto, Nakamura & Oharu 1986, p. 281.

References

Read other articles:

Ali Ashfaq Ali AshfaqInformasi pribadiTinggi 1,78 m (5 ft 10 in)Posisi bermain PenyerangInformasi klubKlub saat ini Club Green StreetsKarier senior*Tahun Tim Tampil (Gol)2001–2005 Club Valencia 109 (104)2006–2007 New Radiant 59 (30)2007–2008 DPMM FC 7 (2)2008–2011 VB Sports Club 85 (93)2012–2013 New Radiant 51 (66)2014–2016 PDRM FA 70 (46)2016 Maziya S&R 12 (8)2017–2018 New Radiant 37 (33)2018–2019 TC Sports Club 12 (16)2019– Club Green Streets 14 (26)Tim...

 

 

Terorisme Definisi Sejarah Insiden Ideologi Anarkis Komunis Konservatif Nasionalis Sayap kanan Sayap kiri Terorisme berbasis narkotika Agama Buddha Kristen (Mormon) Hindu Islam Yahudi Sikh Berkepentingan khusus / Isu tunggal Anti-aborsi Lingkungan Topik terkait Kekerasan etnis Gerakan milisi Gerakan perlawanan Struktur Pendanaan Organisasi utama Kamp pelatihan Skuad kematian Sistem sel klandestin Tanpa perlawanan Radikalisasi kaum muda daring MetodeTaktik Agro-terorisme Alat peledak impr...

 

 

Magnitude 7.1 earthquake in Alta California 1812 Ventura earthquakeSan BuenaventuraSan GabrielSan Juan CapistranoSan DiegoUSGS-ANSSComCatLocal date21 December 1812Local time11:00 PST (UTC-07:00)Magnitude7.0–7.25 Mw 7.1 ML  7.5–7.7 Muk EpicenterSanta Barbara Channel or Wrightwood34°12′N 119°54′W / 34.2°N 119.9°W / 34.2; -119.9Areas affectedAlta California, New Spain Present day Santa Barbara and Ventura CountyMax. intensityX (Extreme) &...

Track cycling venue for the 1984 summer games This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Olympic Velodrome Carson, California – news · newspapers · books · scholar · JSTOR (December 2017) (Learn how and when to remove this template message) Olympic VelodromeLocationCarson, California, United States...

 

 

Boston Lodge HaltStation on heritage railwayTaliesin shunting train into the old locomotive shed at Boston Lodge, 2003General informationLocationNear Porthmadog, GwyneddWalesCoordinates52°55′15″N 4°06′17″W / 52.92086°N 4.10469°W / 52.92086; -4.10469Grid referenceSH584378Owned byFestiniog Railway CompanyManaged byFfestiniog RailwayPlatforms1Key datesJuly 1928Opened15 September 1939Closed23 July 1955Re-opened Boston Lodge Halt in North Wales is an unstaffed ...

 

 

BataviaBatavia pada 1879, karya Arnoldus Borret (1848-1888). Pria dengan topi adalah dokter.BataviaLokasi di SurinameKoordinat: 5°42′41″N 55°52′37″W / 5.71139°N 55.87694°W / 5.71139; -55.87694Negara SurinameDistrikDistrik SaramaccaResort (munisipalitas)Calcutta Batavia di Sungai Coppename, Suriname adalah sebuah bekas tempat penanaman kokoa, pos militer dan koloni lepra. Koloni lepra tersebut dipakai dari 1824 sampai 1897, setelah itu tempat tersebut sepenu...

City in Razavi Khorasan province, Iran For the administrative division, see Rud Ab District. For other places with a similar name, see Rud Ab. City in Razavi Khorasan, IranRud Ab Persian: رودابCityRud AbCoordinates: 36°01′15″N 57°18′46″E / 36.02083°N 57.31278°E / 36.02083; 57.31278[1]CountryIranProvinceRazavi KhorasanCountySabzevarDistrictRud AbPopulation (2016)[2] • Total4,028Time zoneUTC+3:30 (IRST)Rud Ab at GEOnet Na...

 

 

TV Total en 2015 TV total est une émission humoristique, semblable aux talk-shows américains style Late Show de David Letterman, de la chaine privée allemande ProSieben. Elle est présentée par Stefan Raab, pourtant elle se distingue des autres formats de télévisions par la présentation d'extraits d'émissions qui montrent des gens (dans des situations) ridicules. En outre, M. Raab utilise des boutons afin de montrer des petits clips (p. e. une présentatrice d'émission call- in vomis...

 

 

List of events ← 2012 2011 2010 2013 in Kenya → 2014 2015 2016 Decades: 1990s 2000s 2010s 2020s See also: Other events of 2013 Timeline of Kenyan history The following list is of events that happened during 2013 in Kenya. Incumbents President: Mwai Kibaki (until 9 April), Uhuru Kenyatta (starting 9 April)[1] Deputy President: Kalonzo Musyoka (until 9 April),[2] William Ruto (starting 9 April)[1] Chief Justice: Willy Mutunga[3] Speaker of the Senate:...

Untuk kepangeranan, lihat Kepangeranan Tver. Untuk layanan streaming, lihat TVer (layanan streaming). Tver ТверьKota signifikansi oblast[1]Atas: Katedral Tver. Bawah: Di sungai Volga di Tver, Gereja St Catherine di kiri BenderaLambang kebesaranHimne daerah: Lagu kebangsaan Tver[2]Peta lokasi Tver TverLokasi TverTampilkan peta Oblast TverTverTver (Rusia Eropa)Tampilkan peta Rusia EropaTverTver (Eropa)Tampilkan peta EropaKoordinat: 56°51′45″N 35°55′27″E / ...

 

 

Lee Ji-hoonLahir27 Maret 1979 (umur 45)Seoul, Korea SelatanNama lainLee Jee HoonYi Ji-HoonPekerjaanAktor, penyanyiTahun aktif1996–sekarangNama KoreaHangul이지훈 Hanja李智勲 Alih AksaraI Ji-hunMcCune–ReischauerYi Chi-hun Situs webhttp://www.leejeehoon.co.kr (Korea) http://www.leejeehoon.jp/ (Jepang) Lee Ji-hoon (Hangul: 이지훈; lahir 27 Maret 1979)[1] adalah aktor dan penyanyi asal Korea Selatan. Ia juga dikenal sebagai pangeran K-pop. Filmografi F...

 

 

Leeward side of a mountain range For the Australian television series, see Rain Shadow (TV series). Effect of a rain shadow The Tibetan Plateau (center), perhaps the best example of a rain shadow. Rainfalls from the southern South Asian monsoon do not make it far past the Himalayas (seen by the snow line at the bottom), leading to an arid climate on the leeward (north) side of the mountain range and the desertification of the Tarim Basin (top). A rain shadow is an area of significantly reduce...

BFI IMAXThe BFI IMAXBFI IMAXAlamatCharlie Chaplin WalkLondon, SE1Britania RayaKoordinat51°30′18″N 0°06′49″W / 51.505°N 0.113611°W / 51.505; -0.113611Transportasi umum Waterloo Waterloo; (Rawas)PemilikBritish Film InstituteOperatorOdeon CinemasKapasitas458 kursiKonstruksiDibukaMei 1999; 25 tahun lalu (1999-05)ArsitekBryan Avery BFI IMAX adalah sebuah bioskop IMAX di distrik South Bank, London, sebelah utara stasiun Waterloo. Bioskop tersebut dimiliki ol...

 

 

American photographer This article is about the photographer. For the historian, see George W. Bernard. For the general, see George Bernard. George N. BarnardPortrait of George Barnard by Mathew Brady, c. 1865Born(1819-12-23)December 23, 1819Coventry, ConnecticutDied(1902-02-04)February 4, 1902Cedarvale, New YorkNationalityAmericanOccupationPhotographer George Norman Barnard (December 23, 1819 – February 4, 1902) was an American photographer most well known for his photographs from the Amer...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Best of The Blues Brothers – news · newspapers · books · scholar · JSTOR (May 2014) (Learn how and when to remove this message) 1981 greatest hits album by The Blues BrothersBest of The Blues BrothersGreatest hits album by The Blues BrothersReleasedNove...

Public garden in Islington, London Joseph Grimaldi ParkBurial Ground of St James'sJoseph Grimaldi Park after its 2010 refurbishmentTypepublic gardenLocationLondon, EnglandCoordinates51°31′55″N 0°06′54″W / 51.532°N 0.115°W / 51.532; -0.115Area0.5 hectares (1 acre)Operated byLondon Borough of IslingtonOpen8am-duskStatusOpen year roundWebsiteislington.gov.uk Joseph Grimaldi Park is a public garden located off Pentonville Road in Islington, north London. T...

 

 

إي فوتبول النوع لعبة فيديو رياضية المطور(ون) كونامي الناشر(ون) كونامي المِنصّة (أو المِنصّات) أندرويد، غيم كيوب، آي أو إس، بلاي ستيشن 1، بلاي ستيشن 2، بلاي ستيشن 3، بلاي ستيشن 4، بلاي ستيشن 5، بلاي ستيشن بورتبل، غيم بوي أدفانس، نينتندو دي أس، نينتندو 3دي أس، وي، ويندوز، ويندوز �...

 

 

Dewan NuginiPimpinanKetuaFrits Sollewijn Gelpke Wakil KetuaNicolaas Jouwe SekretarisJ. W. Trouw Anggota28PemilihanSistem pemilihan16 dipilihSistem pemilihan16 ditunjukPemilihan terakhir1961Tempat bersidangHollandia L • BBantuan penggunaan templat ini Ketua Dewan Nugini Sollewijn Gelpke (tengah) dengan anggota Arfan dan Mofu, 1962 Dewan Nugini (bahasa Belanda: Nieuw-Guinea Raad) adalah sebuah badan perwakilan sistem satu kamar yang dibentuk di Nugini Belanda pada tahun 1961. Dewan i...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merge...

 

 

يشير التداعي في علم النفس إلى الاتصال العقلي بين المفاهيم والأحداث والحالات العقلية التي تنشأ عن تجارب معينة. يتواجد التداعي في العديد من مدارس الفكر في علم النفس بما في ذلك السلوكية والارتباطية والتحليلية النفسية وعلم النفس الاجتماعي والبنيوية. نشأت فكرة التداعي من أفل�...